

CHESSBOT

ME507 Fall 2022 Project Report

Scott Dunn, Sam Hudson, Dylan Ruiz

Abstract
The report documents the design and build of a robotically operated chessboard, that is

controlled by an online website. The ChessBot successfully replicated early-game moves (such as
simple moves and take moves), but not promotion moves. The novel aspect to this chess robot is

the infrared sensing method which is enabled by the glass chessboard.

 1

Table of Contents
1. List of Figures.. 2

2. List of Tables ... 2

3. Introduction .. 3

3.1. Background Research ...3

4. Specifications .. 4

5. Design Development ... 5

5.1. Hardware Design ...5
5.1.1. PCB Design ... 5
5.1.2. Robot Design .. 6

5.2. Software Design ..8
5.2.1. ChessBot Controller ... 8
5.2.2. ChessBot Server ... 15

6. Results .. 16

7. Appendices ... 19

7.1. Code Documentation and References .. 19

7.2 Kinematics Calculations ... 19

 2

1. List of Figures

Figure 1: Board Design ... 5

Figure 2: Assembled board .. 6

Figure 3: H-Bot vertical and horizontal motion ... 7

Figure 4: Isometric view of the ChessBot .. 8

Figure 5: Diagram of objects that are instantiated in main... 9

Figure 6: Dependency injection for the FetchMove task in main ... 9

Figure 7: FreeRTOS task definition for the controller, in main.. 9

Figure 8: Task Diagram .. 11

Figure 9: Controller Task FSM Diagram ... 12

Figure 10: Motor Task FSM Diagram ... 13

Figure 11: Limit Switch Task FSM Diagram .. 14

Figure 12: Fetch Move Task FSM Diagram .. 15

Figure 13: ChessBot server components and technologies .. 15

Figure 14: ChessBot server frontend interface.. 16

Figure 15: Scenario where game piece positions could not be determined by scanning algorithm. 17

2. List of Tables

Table 1: Technical Specifications ... 4

Table 2: Program object responsibilities ... 10

Table 3: External code library references .. 19

 3

3. Introduction

The goal of this engineering project was to design and build a chess robot that could replicate an online

chess game to moves on a physical board. The motivation for this project was to enable people with

dexterity difficulties to play on a physical chessboard. The hope was that this will help players visualize

chess moves better. The report outlines the design and development of the robot.

3.1. Background Research

Previous attempts to develop robotic chessboards can be split into two system architectures:

1. XY cartesian robots with an actuator for grabbing the pieces

2. Robotic arms with an end effector for grabbing the pieces

The first architecture is the easiest and cheapest to implement, given the project time constraints.

Furthermore, in recent news a chess robot based on the latter architecture broke the finger of a child, as

it mistook the child’s finger for a chess piece1. The second architecture thus has a greater need for safety

protocols, which increases its cost and complexity. Consequently, only the first architecture was

researched further.

Commercial products and student research projects have achieved chess robots using the first

architecture to various levels of success. Square Off2 is the most successful chess robot commercial

offering. It connects to a smartphone app and uses a linear actuator with a magnet to grab the pieces.

However, it costs $400 and has had reported issues with its reliability. Ghost Chess3 is a student project

from the University of Glasgow which achieves a similar result, though uses an electromagnet for grabbing

the pieces, and is controlled via a computer GUI. Their robot also uses a matrix of hall effect sensors to

detect the placement of chess pieces. The matrix sensing method adds significant complexity to the

construction and programming of the system. Josh Eckels4 successfully created a 2D gantry chess robot

with a claw-machine like grabber for the 3rd axis, instead of using linear actuators or electromagnets. The

robot successfully moves pieces, but the speed at which it does so is very slow.

1 https://www.theguardian.com/sport/2022/jul/24/chess-robot-grabs-and-breaks-finger-of-seven-year-old-
opponent-moscow
2 https://squareoffnow.com/product/gks
3 https://magpi.raspberrypi.com/articles/ghost-chess-electromagnets-move-pieces
4 https://www.rose-hulman.edu/news/2021/student-creates-robot-that-is-one-move-ahead-on-chess-board.html

https://www.theguardian.com/sport/2022/jul/24/chess-robot-grabs-and-breaks-finger-of-seven-year-old-opponent-moscow
https://www.theguardian.com/sport/2022/jul/24/chess-robot-grabs-and-breaks-finger-of-seven-year-old-opponent-moscow
https://squareoffnow.com/product/gks
https://magpi.raspberrypi.com/articles/ghost-chess-electromagnets-move-pieces
https://www.rose-hulman.edu/news/2021/student-creates-robot-that-is-one-move-ahead-on-chess-board.html

 4

4. Specifications

The technical specifications for the system were developed, based on the research done previously.

Table 1: Technical Specifications
Specification Verification Method Result

System shall move pieces from one
square to another to within 5mm
accuracy

Test: measure on final system with
calipers

Pass

System shall detect pieces when
under them

Test: check sensor calibration LED is
on when under the piece

Pass

System shall be controlled through a
website that enforces chess rules

Test: test various moves and if they
are correctly rejected/accepted and
sent to the robot

Pass

System shall cost under $300 Observation: calculate total cost Fail

System shall have a user-friendly
controller website interface

Demonstration: let others use the
system and get their feedback

Pass

System shall have a controller
website that can be accessed by two
users simultaneously

Test: two users playing against each
other

Pass

System shall be able to take
replicate moves which involve the
taking of a piece

Test: set up a piece take move on the
controller website and see if it
successfully completes the sequence

Pass

System shall use a custom designed
and built PCB

Inspection: does the system use a
custom designed and built PCB when
functioning?

Pass

System shall be able to carry out a
full chess game

Test: try complex moves that may
occur during a full game

Fail: promotion not
implemented

 5

5. Design Development

5.1. Hardware Design

5.1.1. PCB Design

The electronics consisted of an ESP32 microcontroller board, a 12V-5V buck converter, two TMC2208

stepper motor drivers, two NEMA 17 stepper motors, two limit switches, a 12V linear actuator, and a

TCRT5000 infrared reflective sensor. The linear actuator was controlled via a PMV16XNR MOSFET. The

circuit was designed in EAGLE.

Figure 1: Board Design

After testing the circuit on a bread board, the circuit was sent to be fabricated by JLCPCB, and then

assembled.

 6

Figure 2: Assembled board

The infrared sensor circuit was taken from Open Impulse5, who provided the schematic for the TCRT5000

breakout board. When a chess piece is put over the sensor and is detected, the circuit outputs low to a

GPIO pin. The sensor can be calibrated using the variable resistor and the LED, which lights up when

detecting an object. The external components (the limit switches, infrared sensor, and stepper motors)

connect through header pins. A 2.5mm DC jack allows a standard 12V power supply to be used. The

stepper motor boards and the ESP32 board was attached to the board with female header pins.

Some design adjustments were needed after testing the board. Since the stepping mode of the drivers

was decided after the board had been sent to be fabricated, two jumper wires needed to be attached to

set the drivers to the correct stepping mode (1/2 micro steps). The ESP32 board was also mistakenly

designed to be placed on the back side of the board. Additionally, the SMD LED initially installed was

damaged in the process. Other components had been added around the LED, and so it was difficult to

replace. Therefore, a through-hole LED was soldered on top of the SMD pads instead, which worked as an

adequate replacement. Lastly, the DC jack was wired for a center negative supply, whereas a center

positive supply was purchased. This was fixed by changing the polarity of the supply. Other than these

adjustments, the board worked as intended and no further changes were required.

5.1.2. Robot Design

Following the specification that the robot must be able to detect where pieces are placed on the board,

the idea to use a glass board and an infrared reflective sensor was proposed. This would result in only one

5 https://www.openimpulse.com/blog/products-page/product-category/tcrt5000-infrared-sensor-module/

 7

sensor being required, rather than a matrix of sensors as past projects have attempted. The carriage would

hold the infrared sensor and reflect off the bottom of pieces when it is under them. Since the board is

glass, there will be a measurable difference in received infrared when the sensor is under a piece versus

when it is not.

The chess bot manipulates game pieces about the game board from the bottom side using an H-Bot style

gantry driven by two NEMA17 stepper motors and structured by three MGN12H linear rails. The H-Bot

design was chosen as it reduces the complexity in the design significantly. This is due to the design only

requiring a singular belt which is driven by two stepper motors placed on the two parallel linear rails. Thus,

a motor does not need to be mounted on the carriage, reducing the load requirements on the rest of the

system.

Figure 3: H-Bot vertical and horizontal motion6

A linear actuator with a magnet would selectively move semi-ferrous chess pieces when it was in the

extended position and underneath a piece. The game pieces slide over the glass board to their

commanded position by moving collinear with the grid lines, to maximize the distance between adjacent

pieces and avoid the actuator’s magnet from affecting idle chess pieces.

6 https://www.galil.com/download/whitepapers/wp_h-bot.pdf

https://www.galil.com/download/whitepapers/wp_h-bot.pdf

 8

Figure 4: Isometric view of the ChessBot

The CAD software SOLIDWORKS was used to model the full assembly of the project which helped with

ordering parts and fabrication. Creality and Prusa 3D printers were utilized through the Cal Poly Mustang

‘60 shop to quickly create custom mounting parts for linear rails, stepper motors, idler pulleys and the

primary actuator.

5.2. Software Design

5.2.1. ChessBot Controller7

The complexity of the software necessitated the use of object-oriented programming principles.

Dependency injection was used to enable loose coupling between each class. This allowed the team to

split the programming work up without adding complexity when programs were integrated together.

7 The ChessBot controller repository can be found here: https://github.com/Dyruiz131/me507_Term_Project

https://github.com/Dyruiz131/me507_Term_Project

 9

Figure 5: Diagram of objects that are instantiated in main

Figure 5 shows the objects that are instantiated in the main program. The objects on the bottom of the

diagram must be instantiated first, as they are dependencies required to instantiate the task objects

above. Figure 6 shows an example of this in the main program.

// Create fetch move task object using APIHandler object

APIHandler apiHandler(SSLCertificate);

FetchMove fetchMoveTask(apiHandler);
Figure 6: Dependency injection for the FetchMove task in main

Each task was made into an object, containing a run method which acted as the finite state machine for

the task. In the main program, all dependent objects were instantiated (the motor drivers, kinematics,

and API handler). Then, the task objects were instantiated using the dependent objects. Each task object

was then defined as a FreeRTOS task with its run method and task period.

// Main controller task (FSM)

void defControllerTask(void *p_params)

{

 while (true)

 {

 mainController.run();

 vTaskDelay(100); // Task period

 }

}
Figure 7: FreeRTOS task definition for the controller, in main

A clear benefit to this approach can be seen with the motor control method. Since the motors are

identical, but must both be operated individually, the use of object-oriented programming allowed two

 10

motor driver objects, and subsequently two motor tasks to be instantiated. This reduced the amount of

duplicate code.

Each object has a specific function, intended to abstract away complexity for their parent tasks. The

following is a table of each object and task responsibility:

Table 2: Program object responsibilities

Object Responsibility
Controller Task Main FSM, control actuator, read IR sensor, coordinate both motor movements
Kinematics Helper functions for calculating necessary coordinated motor movements
Motor Task Motor FSM, check for motor commands, move motor.
Motor Driver Abstraction for parent task. Motor control specific to the TMC2208 stepper driver.
Fetch Move Task Move Fetching FSM, convert received Chessboard moves to board coordinates, API

communication.
API Handler Manage specific implementation of REST API communication with server
Limit Switch Task FSM for limit switch checking

 11

Figure 8: Task Diagram

 12

Figure 9: Controller Task FSM Diagram

 13

Figure 10: Motor Task FSM Diagram

 14

Figure 11: Limit Switch Task FSM Diagram

 15

Figure 12: Fetch Move Task FSM Diagram

5.2.2. ChessBot Server8

Figure 13: ChessBot server components and technologies

8 The ChessBot server repository can be found here: https://github.com/sam-hud/ME507-ChessBotServer

https://github.com/sam-hud/ME507-ChessBotServer

 16

The ChessBot is controlled via a REST API based backend server, which runs the Chess.js chess engine. The

chess engine runs a chess game and enforces the game rules. User input to the backend server is gathered

via the frontend website, which uses the react-chessboard component to display the current chess game

and gather the new moves from the user. The chessboard on the frontend website is updated by making

frequent API requests to the backend server. This allows multiple devices to access the same website and

see and control the same game. The ESP32 gathers new move information by sending requests to the

backend server. The response is then parsed using the Arduino_JSON library (since the responses from

the backend server are given as JSON objects). Links to the libraries and frameworks used for the server

can be found in the GitHub repository.

Figure 14: ChessBot server frontend interface

6. Results

The ChessBot performed well considering the scope of the project had to be reduced several times due

to financial and time requirements. During the in-class demonstration day the functionality was limited

as more debugging of the program was necessary. The web page and mechanical system were shown

individually at that time. Several hours after the in-class demonstration, the minor bugs were ironed out

of the tasks and a video was recorded highlighting the full integration and functionality of the systems

within the robot.
The video can be seen here: https://youtu.be/pZI4D91iWpc

Horizontal and vertical movement patterns are displayed in the video, but the H-Bot motor and pulleys

setup was also capable of diagonal translation for the main actuator. To speed up game piece

https://youtu.be/pZI4D91iWpc

 17

manipulation, diagonal movements could be utilized to reduce driving time of the stepper motors.

Additionally, after more testing it could be unnecessary to perform the homing sequence for the robot

after every move if steps are not skipped between position commands. Accumulation of seemingly minute

time optimization processes would certainly make game play more efficient and fluid.
Stepper motors proved to be viable motors paired with the H-Bot configuration as precision and little

force was necessary to move the main actuator around the board. The solenoid linear actuator struggled

to stay retracted or extend at times as it appeared to experience overheating even though it was powered

by its specified values. Before the solenoid experienced overheating it functioned adequately with the

magnet on its end to pull chess pieces across the glass board.
The goal of having a person move a game piece physically and have an artificial intelligence robot be the

opponent had to be changed as deadlines approached. For a human vs. robot interface, it is critical that

the position of all game pieces be always known by the program. To satisfy this requirement a task for

scanning the board using the infrared light sensor was drafted until the realization that it was error prone

was discovered. Scanning the board squares could discern where pieces had moved to but in the event a

take move was performed, it would not always be clear which piece belonged to which player. This

scenario is depicted in Figure 15.

Figure 15: Scenario where game piece positions could not be determined by scanning algorithm.

 18

The white pawn could take either pieces at B5 or D5 and after the take was executed the scanning process

would not know whether the white pawn was located at B5 or D5. This problem led to the solution of just

having two players make their moves in the web server.

Changes to the project would include switching the solenoid actuator to a servomotor, using a vision

system set up to scan the board while recognizing the color of each piece, and scaling down the board to

a more compact size. Using a servo instead of a solenoid would eliminate the problem of overheating,

with the magnet being in one of two positions. A vision system would have allowed us to scan the board

quickly and accurately. It would have solved the scenario presented in Figure 14 as well. After testing the

range of the magnet’s effect on the chess piece, as well as the accuracy of the H-Bot, the game board and

the squares could have been sized down to an optimal size. Testing did not occur until the last week, so

oversizing the board in our preliminary designs was the best option for this project.’ Overall, the project

was lots of fun for the team, despite the many sleepiness nights that occurred.

 19

7. Appendices

7.1. Code Documentation and References

The documentation for the code can be found here: https://dyruiz131.github.io/me507_Term_Project/

Table 3: External code library references

Library Author Link

Arduino_JSON arduino-libraries https://github.com/arduino-libraries/Arduino_JSON

ME-507 Support spluttflob https://github.com/spluttflob/ME507-Support

Arduino-

PrintStream

fork: spluttflob, original:

tttapa

https://github.com/spluttflob/Arduino-PrintStream

All other libraries used are standard ESP32 Arduino libraries.

Referenced for ESP32 API setup: https://randomnerdtutorials.com/esp32-http-get-post-arduino/

7.2 Kinematics Calculations

https://dyruiz131.github.io/me507_Term_Project/
https://github.com/arduino-libraries/Arduino_JSON
https://github.com/spluttflob/ME507-Support
https://github.com/spluttflob/Arduino-PrintStream
https://randomnerdtutorials.com/esp32-http-get-post-arduino/

	1. List of Figures
	2. List of Tables
	3. Introduction
	3.1. Background Research

	4. Specifications
	5. Design Development
	5.1. Hardware Design
	5.1.1. PCB Design
	5.1.2. Robot Design

	5.2. Software Design
	5.2.1. ChessBot Controller
	5.2.2. ChessBot Server

	6. Results
	7. Appendices
	7.1. Code Documentation and References
	7.2 Kinematics Calculations

