MTB Suspension Tuning DAQ
Final Design Review (FDR)

By: Dylan Ruiz

dyruiz@calpoly.edu

Ronan Shaffer

rmshaffe(@calpoly.edu

John Ringrose

jringros@calpoly.edu

Theo Philliber

phillibe(@calpoly.edu

June 6™, 2022
Sponsor:

Professor Joseph Mello

Mechanical Engineering Department
California Polytechnic State University

San Luis Obispo

mailto:phillibe@calpoly.edu
mailto:phillibe@calpoly.edu
mailto:phillibe@calpoly.edu
mailto:phillibe@calpoly.edu

Table of Contents

1. LD TS P s B 0 T 1SS 1
2. ManULACUIINE ... eiiiieeiie ettt ettt ettt e ettt e esbeebeessbeesaeesbeenseesnseenseas 3
2.1 PrOCUTEIMENL «...eiiiiiiiiiiiieiteiieee ettt ettt et e s 3
2.2 Outsourcing & ManUfaACTUIINGeevuieriieriieiiieiie et 3
2.3 ASSCIMDLY ..ttt ettt e abe b e enaeeneas 8
3. Desi@n VerifiCationcccuviiiiiieciie ettt e et sree e sbeeesnree e 10
T B o 1o oa o7 1510) o USRS 10
3.2 Tests and RESUILS.....coouiiiiiiiiiiieee e e 12
3.3 Challenges and Recommended TeStingcccveeruieerieeeriieeiiieeiee e 17
4. Discussion and Recommendationscoceeveeiieirieiiiienie e 19
5. CONCIUSION ..ttt ettt st b et et nae et sae e b enees 20

REETETEIICES ..ottt ettt ettt e et ea e eeeeaeaeeeneaeeeennennnnnnn 21

1. Design Updates

Since CDR, there have been three main design changes: utilize the original DAQ housing and
microprocessor, redesign the main hub printed circuit board (PCB), and an updated auxiliary
sensor housing for the addition of the hall effect sensor.

Utilizing the Original Microprocessor

Since CDR, the intent was to integrate a Renesas Electronics 176 Pin microprocessor in order to
have more pin connections that the original STMicroelectronics 64 Pin microprocessor. This
large increase in number of pins was not a team decision but was due there being a chip shortage.
After incorporating the Renesas Microprocessor into the electrical circuit design on Eagle, we
held a design review with Cal Poly professor and mechatronics expert, Charlie Refvem. During
the review, we learned that incorporating this microprocessor would lead us to more work than
we intended. To our advantage, Charlie had two spare microprocessors that were the exact same
as Steven Wahl had used with his design (STM32F205RGT6) and were able to just have enough
pins on the microprocessor to connect the additional sensors.

Redesigned Main PCB

With the original microprocessors in the hands of the team, we had to redesign the main PCB for
a second time. The Renesas microprocessor had a 25.5mmx25.5mm footprint so when we
changed back to the smaller STM microprocessor (10mm x 10mm) the original board form
factor was a possibility. By reorganizing components of original board design and adding the
new components for the additional sensors, we were able to maintain the same board size as the
original device. This allowed us to use the same main DAQ aluminum housing which saved the
team from having to perform design work on an updated housing. By using the original
microprocessor, we were also able to use the original firmware designed for the STM pinouts.

Updated Auxiliary Sensor Housing for Hall Effect

After the completion of the critical design review, the team still did not have a design for
incorporating the hall effect to the front wheel auxiliary sensor. Once the new boards were
manufactured, and we were able to start hand soldering the electrical components onto the
boards, we could measure the final dimensions of the hall effect in reference to the PCB. Figure
1 below shows a picture of the board for reference.

Hall Effect Sensor

Figure 1. Auxiliary Sensor Board with Hall Effect

The Hall effect sensor is indicated by the red arrow. Since the sensor stands proud of the board
by 10mm, the team added a slot in the sensor housing to incorporate the sensor. Figure 2 shows a
screenshot of the final CAD model of the auxiliary sensor housing with an added slot for the hall
effect sensor.

Hall Effect Sensor Slot

Figure 2. Auxiliary Sensor Housing with Hall Effect Sensor Slot

2. Manufacturing

The following section discusses the manufacturing processes that was executed to complete the
verification prototype. The processes led to the development of the new data acquisition system.

2.1 Procurement

Our part procurement process was largely accomplished through purchasing from online vendors.
All surface mounted (SMT) electrical components that will be soldered to the PCBs, including
resistors, capacitors, batteries, switches, LEDs, and even the aluminum enclosure that houses the
main unit were purchased from Digikey. We chose this vendor because of their exceptional variety
and quantity of parts available, which is critical during supply shortages. We were able to save
money by buying in bulk and consolidating most of our components into one shipment. We
selected our components based on our system requirements and how compatible they are with the
previous version of the DAQ to minimize redesign efforts and potential errors.

We ordered our PCBs and the stencils that we used to apply solder paste to the boards from JLC

PCB because of their cheap costs, quick turnaround time, and reputation when it comes to quality
manufacturing.

2.2 Outsourcing & Manufacturing

The outsourcing of our components begins with the manufacturing of the Main DAQ PCB,
Accelerometer + Hall Effect PCB, and Accelerometer only PCB. These 2-layer PCBs were
manufactured from JLC PCB. In conjunction with this order, we also requested to have stainless
steel PCB stencils manufactured. These stencils allowed us to skim solder paste onto the PCBs. A
zoomed in picture of the main stencil is shown in Figure 3.

. ||I||"‘l

LI
t

h

"

i
ML

X

)
¥

!
!

L]
[’}
g1
| 3
W

r
'
~
-~
el
T
— c—
— —
=

3 A
N Iy N

Figure 3. Main DAQ Stencil close up

In order to have these PCBs and Stencils manufactured, we submitted the necessary Gerber files
to JLC. Gerber files describe the layout and properties of the PCB as defined by our CAD model.
Below are pictures of the four different boards manufactured by JLC.

4\“‘

2o g™

.e®
,:“

/E‘”'f[ﬂ?v fu
JAY, < o
/ 5.7y Quarrz

/ 320 may Hriezsss /I —_7[— H_b:_'_\:h
Il JB:‘JTERV j

l 3 7VCH QuaRrTz #LPLg |

- 2535

|

I

Es !,, 320 MAM

A / I e
Srevey b
.,;{iéif&mé / AD4 ;.gf;}’r f
) vusm’ﬁ ‘;’.5' / 13.:9 . = : ,,
/ & / €0 May

BATTE, RY 7 I

4y,
/j 7,/0’ QUdrTz 4

/
TP
] 20my o Péo2s3s Y

Figure S. Back of Main DAQ PCB

o
=
o
[&]
—
@
=
-«

STEVEN WAAL
CAL POLY, SLO
MTB DAQ

] D
VERSION 1.1

Figure 6. User Interface PCB

STEVEN W .&!uw?'..g

Figure 7. Auxiliary Sensor Boards PCB

In addition to manufacturing the PCBs, we needed to produce more housings for the components.
For the main DAQ unit, we purchased an aluminum enclosure (see Figure 8). This enclosure had
to be modified in two ways. The faceplate needed to have holes cut out for the LEDs, display, and
bolt holes. Second, the side panels will be 3D printed to allow the cables and SD card to be inserted.

Figure 8. Blank Aluminum Enclosure for Main DQ Unit

In order to machine the faceplate, we 3D printed a stencil showing all the features we needed to
cut into it. This was placed over the faceplate and drilled through for the circular holes. The square
display hole was traced through the stencil, and then the corners were drilled out and the sides cut
with an angle grinder. Finally, the corners and sharp edges were cleaned up with files. The stencil
is shown in Figure 9, followed by the machined faceplate in Figure 10.

Figure 10. Machined Faceplate

2.3 Assembly

The assembly process for our system includes adding all the electronic components onto the PCB’s
making them effectively complete. To add all the SMT components to the PCB’s we simulated a
reflow soldering process using a hot plate in place of a reflow oven.

First, we oriented the stencils on top of the PCBs, making sure the slots were perfectly aligned
with the pads on the PCBs. Next, we applied solder paste to the top of the stencil slots, scraping
off the excess paste with a putty knife to ensure the paste was applied evenly.

Figure 11. Applying Solder Paste Using the Stencil

After the paste was applied, we removed the stencil carefully, without disturbing the paste applied
to the PCB. Then we placed all of the SMT components carefully atop of the solder paste.

o

C

Figure 12. Placingcall omponnts on th Aplied Solder Paste
Using the hot plate, we simulated the reflow process by heating up the board and melting the solder

within the solder paste to create viable connections between our components and the board.

Figure 13. Using Hotplate to Simulélte Reflow Oven

During this assembly process, we considered hand soldering all the components onto the boards,
however this posed a high risk. Hand soldering SMT components onto a board can be challenging
without the right equipment, and one mistake can make the entire board non-functional. Due to
these reasons, we decided to pursue other options first and leave this as a last resort. Next, we
planned to simulate the reflow process using a heat gun. This method is primarily used to rework
certain components on the board and would have been inefficient for our use as we are assembling
the entire board which consists of many components. Finally, without the use of a reflow oven, we
decided to use a hot plate. This would allow us to control the temperature of the entire board rather
than certain segments. Using a hot plate proved to be the most efficient method to assemble our
PCBs. Charlie Revfem assisted our team in applying the hot plate method for our PCB assembly.

With the hot plate, we attempted to follow the solder paste manufacturer’s provided thermal profile
[1]. We used this as an approximate goal since we didn’t have the sophisticated equipment required
to precisely control the board’s temperature.

3. Design Verification

The following section discusses the results of the testing conducted on the MTB DAQ
verification prototype. The original specifications designed during the SOW are revisited to
determine if the new device passed or failed. Then the limited metric testing is discussed to
answer whether the device can provide suspension tune feedback.

3.1 Specifications

Our team prepared multiple specifications that were important for our product’s design based on
our initial plan. However, as our team decided to prioritize the functionality and metric testing of
our system, many of these specifications were not able to be met. The following specifications are
referenced within the DVP&R Table in Appendix F.

Main Hub Size

We verified the Main Hub size using calipers. Since our new design of the main hub was not
altered from the original design, despite the additions of the new accelerometer and gyroscope
sensors, our Main Hub dimensions are within the scope of our specification, being around
57x3”x1” in size.

10

Sensor Housings Size

It is important that our sensor housings do not obstruct any of the bikes’ mechanical parts or the
user’s natural pathway when operating the mountain bike. With this in mind, our team decided to
keep the sensor’s housings limited to 1.5”x1.5”x1.5” if possible. Our final design was a sensor
housing that was 1.77x1.2”°x1.06”. Although these dimensions do not match our initial projection,
we determined that this size was sufficient for avoiding obstruction while also providing enough
protection for the sensors. These measurements were also conducted with calipers.

Weight

The weight of our entire system, including the main hub, two external sensors, housings and cables
were measured on a scale. The weight of the entire system is 685g. The weight specification
requires the whole system to be less than 500g. It is desirable to add as little weight as possible to
the mountain bike, as the system is meant to enhance the performance of the mountain bike. A
weight similar to that of a full water bottle was desired to justify its use for customers.

Cost

Our design team initially decided to limit the cost to produce this device to be less than $150. This
specification was decided on when our goal was to create a customer ready product. However,
since our scope has changed, the cost to produce the device is no longer relevant as most of the
cost comes from multiple shipping orders.

Battery Life

The battery life was tested during our metric testing. We set a time limit of at least one hour of
operation in our specifications for our design. This was set with the intention of it being used for
testing sessions that could last at least one hour with no available power sources nearby. Our team
was able to use it for a little over two hours while testing, having no problems with data corruption
from the device with low battery.

Ingress Protection
Due to the change in scope, ingress protection for our device was not designed or tested. Our main
device’s main purpose was to use for metric testing and would fail this test if it were performed
with our current design.

Foolproof

This test focused solely on the use of the Main DAQ system itself, not understand or post-
processing the data. Although our team believes it is important to be able to understand and post-
process the data to achieve results within testing, it is required to have previous knowledge with
the computing software MATLAB.

Maximum Recording Storage
This test solely relies on the SD card used. Since our design implements an external storage unit
(SD Card), the amount of data it can store is varied by the resources of the user. Our design does

11

not have a fixed storage amount and easily exceeds or design specification of storing 8gb or more.
Our team used a 16gb SD card for our testing and had no problems with the memory being full.

Mounting Universality

This specification ensures the possibility of using the DAQ device on all types of full suspension
MTBs. Upon testing this specification, our team encountered an unexpected problem that resulted
in our design to fail this specification. While all MTB’s have a water bottle bosses that are standard
in spacing, the position of the water bottle bosses can vary. This resulted in our test to fail, as we
were unable to insert the ethernet cables into the Main Hub after attaching it to the MTB due to
the obstruction of the frame.

Aesthetics

This specification was also not able to be testing and lost its importance once we switched from
the primary goal of creating a customer ready product. Since the design of the new device was
primarily to test for metrics when optimizing suspension tuning settings, the aesthetics of the
design was no longer important and not within the scope of our project.

Suspension Tuning Recommendation

This specification is out of our project’s scope as we are primarily using the device to validate the
metrics used to create a suspension tuning recommendation. Our device will no longer give a
tuning recommendation itself and is not designed to perform that desired action. It will, however,
be used to collect data that can be used to interpret what settings to change based on our metric
testing.

3.2 Tests and Results

Metric Testing

Metric testing is the main test that evaluates the performance of the MTB DAQ. Since the overall
goal of the project is to quantitively provide suspension tune recommendations, we had to gather
as much data on different suspension settings. There are three suspension tune recommendations
the DAQ can provide feedback on; stiffness, compression damping, and rebound damping. As a
team, we concluded a proven suspension tune recommendation must be backed by large amounts
of data. This data was gathered while a rider rode the same trail on many different suspension tune
setups. This includes modifying each one of the settings individually as well as at the same time.
The validation of a tune would be based on speed and qualitative feedback. Speed meaning how
fast did the rider get from point A to point B. Qualitative feedback from the rider would be their
opinion on how it felt and what it was doing on the trail. With these two validation points, the
metric tested during these trails would hopefully backup the faster speed and better rider feedback
with some sort of sensor rates.

12

The first tested metric was a fork handlebar transmissibility test. This test had one accelerometer
unit positioned on the handlebar and one accelerometer unit positioned on the fork lower. During
the first day of testing, we looked at different fork stiffnesses only. The fork used during this testing
was a Fox 38 with air pressures ranging from 80-100 psi with 5 psi intervals. This range of
pressures was decided on since the recommended pressure by fox was 90 psi for the rider. We
assumed that with this starting point recommendation, the fork stiffness would not be changed
more than + 10 psi. The testing was performed on the first upper segment of Shooters on the Cuesta
Grade. This trail is roughly 1 minute long and features high speed flat corners, chattering sections,
and one small jump. The team collected 2 trials per fork stiffness, totaling up to 10 runs. For post
processing the data we first took the rms value of the fork and handlebar at a time step of 1ms.
This plot ended up showing no clear distinction run-to-run. We then increased this time step until
we could identify spikes or reductions in amplitudes. The final time step we arrived at was ~2 sec.
The 80 psi and 100 psi data are shown below in Figure 14.

Transmissibility for 100psi/80psi Fork Compression
1.2

o
o

14
@

/\ﬂ_,\/ /\ \/\/\// ’\/ ¥\//\\/\ \/r/ﬂ\\//\\/w/\ \A\J r

Transmissibility [RMS(Fork)/RMS(Shock)]

e
&

0.2

) 10 20 30 40 50 60 70 80 90
Time [s]

— 80psi 100psi

Figure 14. Fork-Handlebar Transmissibility Plot of 80psi and 100psi Fork Stiffness

There were a few things to take away from this testing. First, we needed to identify when the trail
begins on the plots. This could be as simple as introducing a small feature at the beginning of trail
that should show a spike on the plot. Secondly, it seems that the fork-handlebar transmissibility
metric may not be the valid way to provide a suspension tune as we did not see dramatic changes
in the data collected.

The next session took place on May 31%, 2022 and looked at fork handlebar transmissibility again.
Max rode the bike during this set of runs. The suspension component being altered was rebound.

13

We did 6 total runs, this time identifying the start of the trail by riding over a 2°x4” block to signify
a peak in the data. From there we could chop the data collection at the actual start and end of the

trail. Here is a plot of the transmissibility for the fastest rebound setting, lowest rebound setting,
and Fox Factory rider recommendation rebound (for Max’s rider weight).

14 Transmissibility Rebound Variable [Handlebars/Axle]
. I I I I I I
6LSR/6HSR
OLSR/0HSR
13l 10LSR/8HSR | |
\
12 \ |\ .
k "1\ ||| |
| ﬁ
11 F \ I\ || | -
E‘ || v | /'IIIIII ||| ||
IS | | \ N
8 4| |’ | II\ | i .
= | LN/ Al | \|
g | \ l | | | I||
@ ’ \ (\ | \
= | \ / I| \ || |
0.9 - '| / ., || i
| \ [V
| \‘ L)
"./\. I|I |
.\ | || |‘
0.8 || i
0.7 - -
0.6 | | | | | | |
-10 0 10 20 30 40 50 60 70

Time, sec
Figure 15. Fork-Handlebar Transmissibility Plot of Slow, Middle, and Fast Rebounds

Figure 15 looks at the RMS values of the fork and handlebar accelerations, but the data was post
processed with a time step of ~1.2 seconds. By looking at the graph, we can see that there is a large
difference in transmissibility between different setups. Less intuitive, but the setting with the least
number of rebound clicks (slowest rebound) showed the largest transmissibly. We took the post

processing one step further and took the rms of these data sets with a time step of the entire length
of the trail. Figure 16 shows the results.

14

0.92

®
0.9
0.88
2
S 0.86
8 »
z
S 0.84
o]
= * *
0.82 *®
®
0.8
Faster Rebound >
0.78
0 2 4 6 8 10 12
Rebound Clicks (CCW)

Figure 16. Transmissibility of Entire Run with Varying Rebound

From Figure 16, we can see that as the rebound setting in the front fork increases this
transmissibility metric decreases. The results of this testing are contradictory to the qualitative
feedback we recorded from Max. The optimal rebound for Max’s fork was 6 clicks and two clicks
in either direction felt very similar, but as the setting went in either direction the suspension started
to feel unstable. In the faster rebounds, the fork felt stiffer and had less traction, whereas the slower
rebounds felt too soft and still did not have traction. Our conclusion on the trend of decreasing
transmissibility with faster rebound settings is that with faster rebounds the accelerometer on the
fork lower was able to accelerate more. The equation below shows the transmissibility function
and the variables changing due to faster rebound.

RMS(Handlebar Acceleration)
RMS(Fork Lower Acceleration)T

lTransmissibilty =

Accelerometer Calibration Verification

Due to time constraints and hardware issues, this test did not end up being performed. The planned
procedures are laid out below for future groups who wish to perform such a test.

MEMS accelerometers have a certain amount of inaccuracy inherent to their design. That is, the
accelerations they read may not accurately reflect the true accelerations they undergo. To get an

15

idea of how accurate our ADXL.375 accelerometers are, we tested them with known accelerations
to compare the data to.

Providing a constant known acceleration to the sensors is a somewhat difficult task. Instead, we
used the known acceleration of gravity to get an idea of how the sensors perform. By positioning
the sensors at different known angles, we can compare the output of the sensors to the theoretical
value. To position the sensors, we created a fixture (Figure 17 below) with slots cut at different
angles. For each 15-degree increment, we averaged 30 seconds of data from each axis, and
compared them to the expected values. Finally, we took the average and standard deviation of the
error at each angle and calculated them to 99.7% uncertainty (3-sigma confidence interval).

Figure 17. Calibration verification fixture. Accelerometer board would be inserted into the
angular slots, cut at 15° intervals from 0° to 90°.

From this calculation, we would get an observed measurement error. This would be compared to

the expected measurement error, based on the accelerometer manufacturer’s posted uncertainties
and the uncertainty of the test rig.

16

3.3 Challenges and Recommended Testing
Debugging and Troubleshooting

Identifying and solving problems with the original device proved to be a greater challenge for us
than we anticipated. Some issues, such as broken soldered connections for buttons, caused bugs
that were intermittent and sporadic. This unpredictable behavior made it harder to pinpoint the
problem. Another issue that took our team some time to identify and fix was an inadequate power
supply, which was probably a result of depleted batteries connected in parallel so that when they
were unequally charged after some use they would drain into each other, so they would discharge
faster than expected. Buying new batteries seemed to fix this issue, as well as disconnecting the
power circuit when not in use.

Procuring Materials and Components

Cal Poly has limited resources for PCB manufacturing and assembly, and electronic components
are in short supply globally. This made it difficult to buy replacement components and locate tools
and hardware on campus that we needed to use during assembly. There was also a learning curve
for our team, as no one had prior experience working with PCBs. Because of this, it took our team
longer than anticipated to put together our verification prototype. Charlie Refvem was a big
resource for our team and provided us with electronic components and tools we needed to assemble
the PCBs that we otherwise would not have had access to.

Metric Testing Challenges

Limited time and logistics, and isolating suspension effects were some of the challenges we faced
when testing the original device once it was up and running. We wanted to get realistic data with
our system, which meant riding an actual mountain bike trail segment repeatedly, as opposed to
some artificially constructed course closer to campus or home. To conduct this testing, we needed
to drive up to Cuesta Ridge, set up the bike and DAQ, and ride down a section of trail and pedal
back up for each run of data collection. This ended up taking 3+ hours for 10 runs just varying a
single suspension parameter, so it’s very time intensive. Once we have collected some data and
identified some trends, it is not always clear if the cause of the trend is due to the change in
suspension settings or something else, like the rider getting more comfortable on the trail and
taking a better line or becoming more tired and riding slower. There are many factors that affect
the end result. Additionally, there are many different methods to process the data, and it is not
always obvious how to analyze it to expose differences between runs and make sense of the
behavior.

17

Recommendations for Testing

First and foremost, we recommend an abundance of testing to collect data on the effects of each
individual suspension parameter on the bike's behavior. Collecting a wealth of data with a variety
of settings, riders, bikes, and trails will help clarify trends in the data and isolate the effects from
specific inputs. It is helpful to have identifiable features that leave distinctive data points as it
makes it easier to compare results between runs. This can be difficult for certain trails, so choosing
a simple trail that can be ridden in around one minute would be optimal. This trail should have
different known significant features that can easily be identifiable when looking at the data. Also,
when starting the trial runs, implement something to roll over to indicate when you start the actual
trial run. This allows you to identify the start of each run through data processing rather than
quickly starting the trial right after you press the button.

18

4. Discussion and Recommendations

From this design project, we learned that root cause analysis and troubleshooting electronics
hardware is difficult and time consuming. When there are dozens of components in a few square
inches of circuit board and hundreds of lines of code, there are a multitude of potential underlying
causes that might be contributing to the buggy behavior. We also learned that designing and
assembling the PCBs takes painstaking time and effort as well as technical skills that we had not
practiced until we assembled our final prototype. This is a crucial step in the manufacturing process
because one faulty soldered connection can disrupt the functionality of the entire system.

To continue this design, we would fix the board design to add any missing traces and fix any
soldering mistakes with the existing components so that every sensor is fully functional. We would
also conduct more testing and collect as much data as possible to have more room for developing
metrics and identifying trends that result from suspension changes.

If we were to continue refining this design to meet the needs of the customer, we would make the
system more user friendly to set up and operate. Specifically, we would redesign the UI to include
a battery charge level indicator, move the record button to the handlebars for easier access, and
recess the power switch below the surface of the housing to prevent inadvertent switch flips. We
would also use batteries that are more standard and safer, such as 18650 cylinders, to avoid
connecting batteries of varying capacities in parallel. Furthermore, we would improve the housings
to eliminate openings to the interior that could allow dust and water to enter the same space as the
electronics and incorporate another mounting option for the central unit, so the rider does not have
to choose between bringing a water bottle or the DAQ on a ride. Finally, we would include
Bluetooth modules to transmit and receive data wirelessly, so the rider does not have to fidget with
messy ethernet cables and zip ties.

If we were to build this prototype again, we would outsource the assembly of the PCBs to
streamline the manufacturing process and minimize any soldering mistakes that could result from
tediously soldering by hand every component onto the board. We would also like to test the final
circuit with a bed of nails to detect voltages and currents at many different grid points to ensure
power and signals are being sent where they should be sent.

To produce a high volume of devices at a reasonable price and in a time efficient manner, we
would outsource the soldering/assembly process to a facility who specializes in PCB production
and has the means to mass produce high quality, reliable boards. We would also buy components
in bulk from suppliers to lower the price per component.

Our team recommends using this design to continue testing potential metrics that will lead to the
development of an algorithm that can be used to suggest optimal suspension tuning settings. Using
the User Manual in Appendix E, anybody should be able to use this design efficiently as our team
covers known bugs and issues with the device.

19

5. Conclusion

In retrospect, this project was not the best fit for a Cal Poly Senior Design Project, given the
structure of the class and timeline of deliverables. The emphasis on problem definition and
ideation in the first quarter is better suited for teams starting a design from scratch, and we feel
that we could have achieved more of our goals if we had been able to test, troubleshoot, and
refine the existing design earlier in the year [2].

In the end, we were able to fully debug the original device and collect good data with a mountain
bike on the trail. We designed and built a partially functional data acquisition device, capable of
collecting data with our two auxiliary accelerometers. We also redesigned and manufactured
sensor housings that are more universally compatible with different bikes. Finally, we analyzed
data that we collected to start identifying trends and experiment with post-processing methods.

We did not achieve a fully functional device capable of collecting data from all three
accelerometers, the gyroscope, and the hall effect speed sensor. We also did not fully develop
and refine enough metrics to robustly process data and draw meaningful conclusions. We
attribute these shortcomings to our mismanagement of time at the beginning of the year, when
we should have been prioritizing testing and hardware troubleshooting. However, we feel that
another reason we failed to achieve these end goals is the ambitious scope of this multi-faceted
project. Considering the experience of our team coming into this project and the resources and
guidance available to us throughout the year, the mismatch between this project’s needs and the
course’s structure and requirements, and the miscommunication about critical flaws in the
original device, we feel we were not adequately prepared to successfully complete our goals that
we set in the beginning of the year.

If we were to do this project over again, we would refine our goals to focus on getting the
hardware and firmware right to build a fully functional data acquisition system from scratch. We
would only move on to metric testing, development, and data processing afterwards, or separate
this section into its own project entirely.

20

References

[1] Solder Paste Data Sheet - https://www.chipquik.com/datasheets/SMD291A X.pdf

[2] S. R. Waal, “A Quantitative Approach for Tuning a Mountain Bike Suspension”, M.S. thesis,
California Polytechnic Univ., San Luis Obispo, CA, 2020.

21

https://www.chipquik.com/datasheets/SMD291AX.pdf

Appendix

A - Main DAQ Python Code

MAIN

; @file main.py

FH

ABOUT:

This code runs a simple data acquisition system on the MTB-DAQ v2.2
board running Micropython PYBvl.1 version 1.12 firmware. The code

records data from three ADXL375BCCZ accelerometers at 1600Hz over SPI and
one MPU-3050 gyroscope and writes the data to binary file on a Micro SD card.

WRITTEN BY: Steven Waal / Updated by Team F11
DATE: 04.12.2022

NOTES:
05.28.2019
06.07.2019

01.29.2020
02.12.2020
02.12.2020

02.19.2020
03.10.2020

05.23.2020
06.11.2020
04.12.2022

File created (SRW)

Updated to use SPI bus no. 2 instead of no. 1 (not sure why
but for some reason SPI bus no. 1 is not working properly)
Implemented RTOS system

Implemented display and SD card tasks.

Having trouble with timing. I can't get faster than 5msec
between measurements. I tried moving the record state for
each task to the very top (to minimize if statements it
takes to get there) but that didn't do too much.
Implemented code to support ISR

Changed over to PyBoard. Update pinouts and code to check
presence of micro SD card.

Adapted code to work with MTB DAQ v2.2 main board.

Final comments added, code cleaned up

Added third accelerometer and gyroscope

COPYRIGHT:

@copyright This program is copyrighted by Steven Waal and released under
the GNU Public License, version 3.0.

b R R R R R I T T T N R N

MISC. NOTES

b W R W W W

— There is a completely blank file called "SKIPSD" that is loaded onto
the board. This prompts the microcontroller to boot from the
the internal flash instead of the SD card when an SD card is inserted
before powering on.

Al

F.

7

IMPORT MODULES
g

Import modules for use in this file. Note that there are certain modules
that automatically come with downloading micropython onto the board. To
see a list of these modules, type help("modules") in the REPL. This will
return a list of the available modules. Custom modules can be added by
saving them as separate *.py files, uploading them to the board, and

referring to them here.

HARDWARE MODULES

from ADXL375_driver import ADXL375
from ht16k33_seg import Segl4x4
from MPU3050_Driver import MPU3050

GENERAL MICROPYTHON MODULES
import micropython, pyb, utime, gc, machine, os

MISC.

from helperFunctions import clear_accel_buf
from helperFunctions import decode_data
from helperFunctions import twos_comp

from helperFunctions import get_ODR

ks

ALLOCATE MEMORY FOR ERROR REPORTS
#

7

According to Micropython docs, "If an error occurs in an ISR,

MicroPython is unable to produce an error report unless a special buffer
is created for the purpose. Debugging is simplified if the following

code is included in any program using interrupts."

micropython.alloc_emergency_exception_buf(10@)

A2

7

DEFINE ACCELEROMETER PARAMETERS

Determines how many data points are stored in the FIFO buffer before an
an interrupt is generated. Maximum is 32.
FIFO_BUFF_COUNT = micropython.const(20)

DEFINE BUFFERS

CMD_RD = bytearray((0bl1110010, 0, @, @, 0, 0, @)) # ADX/37/5 1.

Command to read multiple bytes starting with X data

buf1_7 = bytearray(7) # Buffer of ADXL375_1. Make buffer large enough to
read data from X, Y, and Z

buf2_7 = bytearray(7) # Buffer of ADXL375_2. Make buffer large enough to
read data from X, Y, and Z

buf3_7 = bytearray(7) # Buffer of ADXL375_3. Make buffer large enough to
read data from X, Y, and Z

buf4_7 = bytearray(7) # Buffer of MPU-3050. Make buffer large enough to
read data from X, Y, and 2

buf_HE = bytearray((@be@eeeeee)) # Burfer of hall effect sensor. Make

buffer 1 byte to store how many passes of the magnet have occurred.

CREATE PIN OBJECTS

i % Y

Create pin objects. Pins are labeled according to the MTB DAQ v2.2 main
board schematic.

3

A3

cD = pyb.Pin(pyb.Pin.cpu.A8, pyb.Pin.IN, pyb.Pin.PULL_UP)

SPI1_CS1 = pyb.Pin(pyb.Pin.cpu.A@, pyb.Pin.O0UT)
SPI1_CS2 = pyb.Pin(pyb.Pin.cpu.Al, pyb.Pin.OUT)
SPI1_CS3 = pyb.Pin(pyb.Pin.cpu.B9, pyb.Pin.O0UT)
REC_BTN = pyb.Pin(pyb.Pin.cpu.B3, pyb.Pin.IN)
REC_LED = pyb.Pin(pyb.Pin.cpu.C4, pyb.Pin.OUT)
ADXL1_INT1 = pyb.Pin(pyb.Pin.cpu.C@, pyb.Pin.IN, pyb.Pin.PULL_DOWN)

def HALL_EFF_CB(IRQ_src):
global buf_HE
buf_HE[@] = 1

HALL_EFF_INT pyb.ExtInt(pyb.Pin.cpu.Cl, pyb.ExtInt.IRQ_RISING, pyb.P

VLogic = pyb.Pin(pyb.Pin.cpu.C13, pyb.Pin.0UT)
VLogic.high()
Gyro_I2C = pyb.I2C(2, pyb.I2C.MASTER)

Gyro_I2C.init(baudrate = 40000)
utime.sleep_ms(100)

Display = Segldx4(machine.I2C(1))
Display.text(' ")
Display.show()

A4

#
INITIAL CHECK IF SD CARD IS PRESENT
#

If SD card is not present, program waits until user inserts one and flashes
"SD" on the display.

Once the SD card is present, the proper files and directories are created
1f they have been erased.

If SD is not detected, flash "SD" on the display.
if CD.value():

Display.text(' SD')

Display.blink_rate(2)

Display.show()

Wait for user to insert SD card if not already done.

while CD.value():
Make display LEDs blink. This will hold up the program and ensure that
the SD card is mounted before continuing.
utime.sleep_ms(100)

Clear display once SD card has been inserted.
utime.sleep(3)

Display.text(’ '} # Clears display
Display.blink_rate(@)

Display.show()

try:
Once user has inserted SD card, mount it.
os.mount(pyb.SDCard(), '/sd')
except:
Display.text('0OFF ')
Display.blink_rate(2)
Display.show()

Remake 'log' directory if it has been erased. If not, ignore error
try:

os.mkdir('/sd/log")
except:

pass

Remake 'count' directory if it has been erased. If not, ignore error
try:

AS

os.mkdir('/sd/count"’)
except:
pass

Check if 'count.txt' was erased. If it was, remake it

try:
file = open('/sd/count/count.txt', 'x') # The 'x' argument indicates that
1if the file already exists, through an error

file.write('@\n")

file.close()
except:

pass

Change directory to SD card to prepare for writing files to it
os.chdir('/sd/log")

A

CREATE SPI OBJECT

Create SPI object in order to use the spi protocol

Set baudrate to maximum of 5 MHz

Set polarity and phase as specified by sensor datasheets.

spi_1 = pyb.SPI(1, pyb.SPI.MASTER, baudrate=5000000, polarity=1, phase=1,
bits=8, firstbit=pyb.SPI.MSB)

CREATE ADXL375 ACCELEROMETER OBJECTS AND CONFIGURE SETTINGS

stk dokokokkokokk koK Fekkkdokdok
kkkkkADXL3I75 1 OBIECTkkskkk
FFAAKK KRR F KKK KK I AKKAANK

R BB R

A6

ADXL375_1 = ADXL375(spi_1, SPI1_CS1)
ADXL375_1.standby()

ADXL375_1.0dr(ADXL375_1.0DR_1600HZ)
ADXL375_1.normal_power_mode()

ADXL375_1.spi_4_wire()
ADXL375_1.right_justify()

ADXL375_1.int_disable(ADXL375_1.Watermark_enable)
ADXL375_1.FIF0_Mode_FIFO()
ADXL375_1.trigger_int1()

ADXL375_1.interrupt_active_high()
ADXL375_1.set_samples(FIFO_BUFF_COUNT)

ADXL375_2 = ADXL375(spi_1, SPI1_CS2)
ADXL375_2.standby()

ADXL375_2.0dr(ADXL375_2.0DR_1600HZ)
ADXL375_2.normal_power_mode()

ADXL375_2.spi_4_wire()
ADXL375_2.right_justify()

ADXL375_3 = ADXL375(spi_1, SPI1_CS3)
ADXL375_3.standby()

ADXL375_3.0dr(ADXL375_3.0DR_1600HZ)
ADXL375_3.normal_power_mode()

ADXL375_3.spi_4_wire()
ADXL375_3.right_justify()

Gyro = MPU3050(Gyro_I2C)

A7

F

by
i’

GET FILE COUNT

i

k.,

print('GET FILE COUNT")

print()
countFile = open('/sd/count/count.txt', 'r'")
last_line = int(countFile.readlines()[-1])

file_count = last_line
countFile.close()

i

INITIALIZE RECORD LED AND CLEAR DISPLAY

print('INITIALIZE RECORD LED AND CLEAR DISPLAY')
print()

Turn off record LED

REC_LED.value(1)

Clear display

Display.text(' ') # Clears current text/numbers on display
Display.number(file_count) # Prints the desired number
Display.blink_rate(@)

Display.show() # Updates the display

while True:

.

WAIT FOR INPUT FROM RECORD SWITCH

#__

A8

print('WAITING FOR INPUT...'")

print()

while REC_BTN.value() == True:
pass

while REC_BTN.value() == False:
pass

print('RECORDING')
print()

REC_LED.value(@)

file_count += 1

countFile = open('/sd/count/count.txt', 'a')
countFile.write(str(file_count) + "\n")
countFile.close()

Display.text(" ")
Display.number(file_count)
Display.blink_rate(0)
Display.show()

ADXL375_1.standby()
clear_accel_buf(ADXL375_1)
ADXL375_2.standby()
ADXL375_3.standby()

file = open('data’ + str(file_count) +'.bin', 'wb')

A9

ADXL375_1.int_enable(ADXL375_1.Watermark_enable)

ADXL375_1.measure()

ADXL375_2.measure()

ADXL375_3.measure()

HALL_EFF_INT = pyb.ExtInt(pyb.Pin.cpu.Cl, pyb.ExtInt.IRQ_RISING,
pyb.Pin.PULL_NONE, callback=HALL_EFF_CB)

while REC_BTN.value() == True:
while ADXL1_INT1l.value() == False:

pass
for i in range(FIFO_BUFF_COUNT):

SPI1_CS1.low(); spi_l.send_recv(CMD_RD, buf1_7); SPI1_CS1.high()
SPI1_CS2.low(); spi_1.send_recv(CMD_RD, buf2_7); SPI1_CS2.high()
SPI1_CS3.low(); spi_l.send_recv(CMD_RD, buf3_7); SPI1_CS3.high()

Gyro.i2c.mem_read(buf4_7, 0b1101000, 0x29)

file.write(buf1_7)
file.write(buf2_7)
file.write(buf3_7)
file.write(buf4_7)
file.write(buf_HE);

while REC_BTN.value() == False:
pass

print('DONE RECORDING')
10

Al0

print()

file.close()

ADXL375_1.standby ()
ADXL375_2.standby ()
ADXL375_3. standby ()

REC_LED.value(1)

HALL_EFF_INT = pyb.ExtInt(pyb.Pin.cpu.Cl, pyb.ExtInt.IRQ_RISING,
pyb.Pin.PULL_NONE, callback=None)

print('FINISHED')
print()

Display.text("' ")
Display.number(file_count)

Display.blink_rate(@)
Display.show()

11

All

B - Gyroscope Driver Python Code

@file Gyro.py
@brief Driver class that sets up and receives data from an Gyroscope

from pyb import I2C
import struct
import time

import os
class Gyro:
'"!' @brief An gyro driver class
@details Objects of this class can be used to recieve gyro data.

def __init_ (self):
''"' @brief Initializes and returns an gyro object
@details Initializes the gyro in master mode, allowing the
retrieval of data.

self.i2c = 12€(1, I2C.MASTER)

self.i2c.mem_write(0b1110001,0b110100,0x12)

self.i2c.mem_write(0b00000111,0b110100, 0Ox15)

self.i2c.mem_write(0b00011000,0b110100, 0x15)

def Who_am_I(self, Identity):
self.i2c.mem_write(Identity, 0b110100, 0x0)

def USER_CONTROL(self, Control):
self.i2c.mem_write(Control, 0b110100, 0x3D)

def sleep(self, Power_Management):
self.i2c.mem_write(Power_Management, 0b110100, Ox3E)

def gyro_offsets(self, offsets):
self.i2c.mem_write(offsets, 0b110100, 0xC)

def Read_FIFO_COUNT(self):
return self.i2c.mem_read(2, 0b110100, 0x3A)

def READ_FIFO_DATA(self):

Bl

return

def omega(self):
''' @brief Method to read angular velocity from the Gyro to use as
state measurements
self.omega_signed_ints = struct.unpack('<hhh',
self.i2c.mem_read(6, @b110100,
0x29))
self.omega_vals = tuple(self.omega_int/16 for self.omega_int in
self.omega_signed_ints)
return self.omega_vals

B2

C - Data Processing MATLAB Code

6/6/22 10:52 AM Accelerometer Data_Testing.m 1 of 8

%% Accelerometer_Data_Testing.m

ABOUT:

This code interprets the binary data saved from the ADXL375BCCZ
accelerometer using the "Convert_ADXL375_Data" function and then plots
the results.

WRITTEN BY: Steven Waal

DATE: 02.29.2021

UPDATED BY: DYLAN RUIZ & THEO PHILLIBER
DATE: 06.02.2022

NOTES:
02.29.2021 - File created (SRW).
06.02.2022 - Post Processed Data for Transmissibility Metric

df of of df d° of o of oP 9P of of d° oF of

% Clear statements
clear all;

close all;

clg;

First Test Run

o o
d€ of of

% Set the filepath here!

% filePath = "/Volumes/DATA/log/datal.bin"; % Filepath to where the binary
% data file is stored

filePath = ('datal55.bin');

frequency = 1600; % [Hz] Frequency of the accelerometers

% Run "Convert_ADXL375_Data" function
out = Convert_ADXL375_Data(filePath, frequency);

% Rename outputs for clarity
time_1 = out(1:92500,1);

x1 = out(1:92500,2);
yl = out(1:92500,3);
z1 = out(1:92500,4);
x2 = out(1:92500,5);
y2 = out(1:92500,6);
z2 = out(1:92500,7);
suml = @;

sum2 = 0;

factor =2000; % Factor used to create RMS timesteps for post processing.
% The larger the factor, the bigger timestep between RMS calcs.
% length(x1) > factor > 1

% Calculates the total magnitude of accelerations per accelerometer
for i = 1:length(x1)
total_mag_1(i) = (x1(i)"2+y1(i)"~2+z1(i)~2)~(1/2);
total_mag_2(1i) = (x2(i)"2+y2(i)"2+z2(1)~2)"~(1/2);
end

C1

6/6/22 10:52 AM Accelerometer Data Testing.m

2 of 8

% calculates the total RMS of each accelerometer for the entire

for n = 1:length(total_mag_1)
suml = suml+(total_mag_1(n))"2;
sum2 = sum2 + (total_mag_2(n))”"2;
end
Accelrms_1
Accelrms_2

((1/length(total_mag_1))*suml)~(1/2);
((1/length(total_mag_2))*sum2)~(1/2);

% Transmissibility of the entire run
Transmiss = Accelrms_2/Accelrms_1;

% Calculates the rms of each timestep based on the factor.
for n = 1:((length(total_mag_1)/factor)-1)

rms_array_1 = total_mag_1((n-1)*factor+l : (n)*factor);
rms_array_2 = total_mag_2((n-1)*factor+l : (n)*factor);
time_array = time_1((n-1)*factor+l : (n)*factor);

for i = 1l:length(rms_array_1)
suml = suml+(rms_array_1(i))"2;
sum2 = sum2+(rms_array_2(i))"2;

end

((1/length(rms_array_1))*suml)~(1/2);
((1/length(rms_array_2))*sum2)~(1/2);
mean(time_array);

Accel_rms_1(n)
Accel_rms_2(n)
time_list(n,1)
suml ;
sum2 0;

end

trans = (Accel_rms_2./Accel_rms_1)"';

% Plot raw data accelerometer 1

figure

plot(time_1, x1, time_1, y1, time_1, zl1);
legend('X', "Y', 'Z');

xlabel('Time, sec');
ylabel('Acceleration, g');
title('Accelerometer 1');

% Plot raw data accelerometer 2

figure

plot(time_1, x2, time_1, y2, time_1, z2);
legend(X', 'Y', 'Z');

xlabel('Time, sec');
ylabel('Acceleration, g');
title('Accelerometer 2');
%axis([@,10.5,-5,3])

% Plot magnitude accelerometer 1
figure

plot(time_1, total_mag_1);
xlabel('Time, sec');

C2

run

6/6/22 10:52 AM Accelerometer Data Testing.m

3 of 8

ylabel('Acceleration Magnitude, g');
title('Accelerometer 1 Magnitude');
%axis([0,10.5,0,7]1)

% Plot magnitude accelerometer 1
figure

plot(time_1, total_mag_2);

xlabel('Time, sec');
ylabel('Acceleration Magnitude, g');
title('Accelerometer 2 Magnitude');
%axis([@,10.5,0,7])

% Plot RMS accelerometer 1
figure

plot(time_list, Accel_rms_1);
xlabel('Time, sec');
ylabel('Acceleration RMS, g');
title('Accelerometer 1 RMS');
%axis([@,10.5,0,5])

% Plot RMS accelerometer 2
figure

plot(time_list, Accel_rms_2);
xlabel('Time, sec');
ylabel('Acceleration RMS, g');
title('Accelerometer 2 RMS');
%axis([0,10.5,0,5])

% Plot Transmissibility

figure

plot(time_list, trans);

xlabel('Time, sec');

ylabel('Transmissibility');
title('Transmissibility [Handlebars/Axle]');

%)

% Second Test Run

%)

o

% Set the filepath here!

%filePath = "/Volumes/DATA/log/datal.bin"; % Filepath to where the binary
% data file is stored

filePath = ['datal56.bin'l;

frequency = 1600; % [Hz] Frequency of the accelerometers

% Run "Convert_ADXL375_Data" function
out = Convert_ADXL375_Data(filePath, frequency);

% Rename outputs for clarity

time_2 out(:,1);
x1 = out(:,2);
yl = out(:,3);
z1 = DUt{:l4):
X2 = out(:,5);

C3

6/6/22 10:52 AM Accelerometer Data Testing.m

4 of

out(:,6);
out(:,7);

y2

z2

suml = @
sum2 = @;
total_mag_1
total_mag_2
rms_array_1
rms_array_2

r

TETETET

[~

% Calculates the total magnitude of accelerations per accelerometer
for i = 1:1ength(x1)
total_mag_1(i) = (x1(i)~2+yl(i)~2+z1(i)~2)~(1/2);
total_mag_2(i) = (x2(i)~2+y2(i)~2+z2(i)~2)~(1/2);
end

% calculates the total RMS of each accelerometer for the entire run
for n = 1:length(total_mag_1)

suml = suml+(total_mag_1(n))"2;
sum2 = sum2 + (total_mag_2(n))~2;
end
Accelrms_11

Accelrms_12

((1/1length(total_mag_1))%suml)~(1/2);
((1/length(total_mag_2))*sum2)~(1/2);

% Transmissibility of the entire run
Transmiss_2 = Accelrms_12/Accelrms_11;

% Calculates the rms of each timestep based on the factor.
for n = 1:((length(total_mag_1)/factor)-1)

rms_array_1 = total_mag_1((n-1)xfactor+l : (n)xfactor);
rms_array_2 = total_mag_2((n-1)xfactor+l : (n)xfactor);
time_array = time_2((n-1)xfactor+l : (n)xfactor);
for i = 1:length(rms_array_1)

suml = suml+(rms_array_1(i))~2;

sum2 = sum2+(rms_array_2(i))"2;

end

Accel_rms_11(n) ((1/length(rms_array_1))*suml)~(1/2);
Accel_rms_22(n) ((1/1length(rms_array_2))*sum2)~(1/2);
time_list_11(n,1) = mean(time_array);

suml = @;

sum2 0;

end

trans_1 = (Accel_rms_22./Accel_rms_11)"';

% Plot raw data accelerometer 1

figure

plot(time_2, x1, time_2, y1, time_2, zl1);
legend('X', 'Y', 'Z');

xlabel('Time, sec');
ylabel('Acceleration, g');

C4

6/6/22 10:52 AM Accelerometer_Data_Testing.m

5 of 8

title('Accelerometer 1');

% Plot raw data accelerometer 2

figure

plot(time_2, x2, time_2, y2, time_2, z2);
legend(‘X', 'Y', 'Z');
xlabel('Time, sec');
ylabel('Acceleration, g

");
title('Accelerometer 2');

% Plot Magnitude accelerometer 1
figure

plot(time_2, total_mag_1);
xlabel('Time, sec');
ylabel('Acceleration Magnitude, g');
title('Accelerometer 1 Magnitude');

% Plot Magnitude accelerometer 2
figure

plot(time_2, total_mag_2);
xXlabel('Time, sec');
ylabel('Acceleration Magnitude, g');
title('Accelerometer 2 Magnitude');

% Plot RMS accelerometer 1
figure

plot(time_list_11, Accel_rms_11);
xlabel('Time, sec');
ylabel('Acceleration RMS, g');
title('Accelerometer 1 RMS');

% Plot RMS accelerometer 2
figure

plot(time_list_11, Accel_rms_22);
Xlabel('Time, sec');
ylabel('Acceleration RMS, g');
title('Accelerometer 2 RMS');

Third Test Run

o o
qf of 4f

filePath = ['datal57.bin'];
frequency = 1600; % [Hz] Freqguency of the accelerometers

% Run "Convert_ADXL375_Data" function
out = Convert_ADXL375_Data(filePath, frequency);

% Rename outputs for clarity

time_3 = out(:,1);
x1 = out(:,2);

Cs

6/6/22 10:52 AM Accelerometer Data Testing.m

6 of 8

yl = out(:,3);
z1 = out(:,4);
X2 = out(:,5);
y2 = out(:,6);
z2 = out(:,7);
suml = @;

sum2 = @;

% Calculates the total magnitude of accelerations per accelerometer
for i = 1:length(x1)
total_mag_1(1i)
total_mag_2(1i)
end

(x1(i)~2+y1(i)~2+z1(i)~2)~(1/2);
(x2(1)~2+y2(i)~2+2z2(i)"2)~(1/2);

% Calculates the total RMS of each accelerometer for the entire run
for n = 1:length(total_mag_1)

suml = suml+(total_mag_1(n))"2;

sum2 = sum2 + (total_mag_2(n))"2;
end
Accelrms_1
Accelrms_2

((1/length(total_mag_1))*suml)~(1/2);
((1/length(total_mag_2))*sum2)~(1/2);

% Transmissibility of the entire run
Transmiss_3 = Accelrms_2/Accelrms_1;

% Calculates the RMS of each timestep based on the factor.
for n = 1:((length(total_mag_1)/factor)-1)

rms_array_1 = total_mag_1((n-1)xfactor+l : (n)xfactor);
rms_array_2 = total_mag_2((n-1)xfactor+l : (n)xfactor);
time_array = time_3((n-1)xfactor+l : (n)xfactor);

for i = 1l:length(rms_array_1)
suml = suml+(rms_array_1(i))"2;
sum2 = sum2+(rms_array_2(i))~2;

end

Accel_rms_31(n) = ((1/length(rms_array_1))*suml)~(1/2);

Accel_rms_32(n) = ((1/length(rms_array_2))*sum2)~(1/2);

time_list_3(n,1) = mean(time_array);

suml

sum2
end
trans_3 = (Accel_rms_32./Accel_rms_31)"';
%rms_array_1(1:1length(total_mag_1),1) = Accel_rms_1;
%rms_array_2(1:1length(total_mag_2),1) = Accel_rms_2;

0;

% Plot raw data accelerometer 1

figure

plot(time_3, x1, time_3, yl, time_3, z1);
legend(‘X', "Y', 'Z2');

xlabel('Time, sec');

Co6

6/6/22 10:52 AM Accelerometer Data Testing.m 7 of 8

ylabel('Acceleration, g');
title('Accelerometer 1');

% Plot raw data accelerometer 2

figure

plot(time_3, x2, time_3, y2, time_3, z2);
legend(X', 'Y', '2');

xlabel{'Time, sec');
ylabel('Acceleration, g');
title('Accelerometer 2');

% Plot Magnitude accelerometer 1
figure

plot(time_3, total_mag_1);
xlabel('Time, sec');
ylabel('Acceleration Magnitude, g');
title('Accelerometer 1 Magnitude');

% Plot Magnitude accelerometer 2
figure

plot(time_3, total_mag_2);
xlabel{'Time, sec');
ylabel('Acceleration Magnitude, g');
title('Accelerometer 2 Magnitude');

% Plot RMS accelerometer 1
figure

plot(time_list_3, Accel_rms_31);
xlabel('Time, sec');
ylabel('Acceleration RMS, g');
title('Accelerometer 1 RMS');

% Plot RMS accelerometer 2
figure

plot(time_list_3, Accel_rms_32);
xlabel('Time, sec');
ylabel('Acceleration RMS, g');
title('Accelerometer 2 RMS');

% Plot Transmissibility Run 3

figure

plot(time_list_3, trans_3);

xlabel('Time, sec');
ylabel('Transmissibility');
title('Transmissibility [Handlebars/Axle]');

% Plot the Transmissibilities of the three runs

figure

plot(time_list, trans,'g',time_list_11,trans_1,'r',time_list_3,trans_3,'b");
xlabel('Time, sec');

ylabel('Transmissibility');

title('Transmissibility Rebound Variable [Handlebars/Axle]');

legend('8LSR/8HSR", '4LSR/4HSR', '2LSR/2HSR"}

C7

D - Converting Data MATLAB Code

6/6/22 10:58 AM Convert ADXL375 Gyro Data.m 1 of 3

%% Convert_ADXL375_Data.m

% ABOUT:

% This function interprets the binary data saved from the ADXL375BCCZ

% accelerometer.

% ARGUMENTS:

% filePath = The filepath to the binary file.

%

% frequency = The frequency at which the data was collected.

% OUTPUTS:

% out = [time, x_acceleration_1, y_acceleration_1,

% z_acceleration_1, x_acceleration_2, y_acceleration_2,
% z_acceleration_2];

% The interpreted data from both accelerometers (1 and
% 2) for the x, y, and z axes.

% WRITTEN BY: Steven Waal

% DATE: 05.06.2019

% UPDATED BY: DYLAN RUIZ

% DATE: 06.02.2022

% NOTES:

% 05.06.2019 - File created (SRW). Referenced EOM_2DOF (older version).

% (SRW)

% ©09.12.2020 - Cleaned up code and added more comments. (SRW)

% 06.02.2022 - Added functionality for third accelerometer, gyro and hall
% effect sensor.

function out = Convert_ADXL375_Data(filePath, frequency)

% CONSTANTS
SCALE_FACTOR = 0.0488; % [g/LSB] (see ADXL375 data sheet)
SCALE_FACTOR_GYRO = 1/16.4; % [(deg/s)/LSB] (see MPU3@50 data sheet)

% (FS_SEL = 3)
% Open binary data file from MTB DAQ
file = fopen(filePath);

% Read binary data from file and store in variable 'data'
data = fread(file);

% Close binary data file
fclose(file);

data = reshape(data, 29, [1);
% Decode data
% Add LSBs and MSBs together to reconstruct X, Y, and Z data

% Accel 1
x1 = data(2,:) + 256xdata(3,:);

Dl

6/6/22 10:58 AM Convert_ADXL375_Gyro_Data.m 2 of 3

yl = data(4,:) + 256%data(5,:);
z1 = data(6,:) + 256xdata(7,:);

% Accel 2

x2 = data(9,:) + 256xdata(10,:);
y2 = data(11,:) + 256xdata(12,:);
z2 = data(13,:) + 256xdata(14,:);
% Accel 3

X3 = data(16,:) + 256xdata(17,:);
y3 = data(18,:) + 256xdata(19,:);
z3 = data(20,:) + 256xdata(21,:);
% Gyro

x4 = data(23,:) + 256xdata(24,:);
y4 = data(25,:) + 256xdata(26,:);
z4 = data(27,:) + 256xdata(28,:);

% Hall Effect
HE = data(29,:);

% Take two's complement to get sign of data
for i=1:1length(x1)
if x1(1)>32767
x1(1)=x1(i)-65536;
end
if y1(i)>32767
y1(i)=y1(i)-65536;
end
if z1(1i)=>32767
z1(i)=z1(1)-65536;
end
if x2(1)=32767
x2(1)=x2(1i)-65536;
end
if y2(i)>32767
y2(i)=y2(i)-65536;
end
if z2(1)>32767
z2(i)=2z2(1i)-65536;
end
if x3(1)=32767
x3(1)=x3(1)-65536;
end
if y3(i)>32767
y3(i)=y3(i)-65536;
end
if z3(1)=32767
z3(1)=23(1)-65536;
end
if x4(1)=32767
x4(i)=x4(1)-65536;
end

D2

6/6/22 10:58 AM Convert_ADXL375_Gyro_Data.m

3 of 3

i

e
i

e
end

N
N
L T VT T A (I T A T

time

% Output the acceleration values, in g's, rotational velocity in deg/s
[time', x1', yl1', z1', x2', y2', z2',x3',y3',23',x4',y4"',z4"' ,HE'];

out =

end

f y4(i)>32767
y4(i)=y4(1i)-65536;

nd

f z4(1)>32767
z4(1)=24(1)-65536;

nd

x1.xSCALE_FACTOR;
y1.xSCALE_FACTOR;
z1.%5CALE_FACTOR;
x2.xSCALE_FACTOR;
y2.xSCALE_FACTOR;
z2.*%SCALE_FACTOR;
x3.xSCALE_FACTOR;
y3.xSCALE_FACTOR;
z3.%SCALE_FACTOR;
x4.xSCALE_FACTOR_GYRO;
y4.xSCALE_FACTOR_GYRO;
z4.%SCALE_FACTOR_GYRO;

= [@: 1/frequency: (length(x1)-1)/frequency];

D3

E - User Manual

The following user manual provides instructions to operate the MTB DAQ as well as important
safety information. Read this section this prior to operation and see the troubleshooting section if
problems arise.

Operation of DAQ System

Flashing the Main DAQ (directly from Steven Waal’s Thesis)

The main board was designed based on the PYBv1.1 schematic. As a result, the firmware and
flashing instructions are the same as those for the PyBoard. The main board utilizes the device
firmware update (DFU) protocol that comes embedded with each STM32 microcontroller. DFU
mode allows for a simple way to update the firmware of an STM32 without requiring specialized
hardware. It was mainly designed for updating the firmware remotely on devices that have already
been released. To flash firmware to the board, use the following steps:

1. Make sure that a DFU utility program is installed on the computer that will be used to
flash the firmware. “dfu-util” is a free DFU utility program than runs in terminal. Install this
program via the package manager.

2. With the power to the board turned off, move the jumper on port JP1 from “JMP
STORE” position to the “DFU” position. This will tie the DFU pin of the microcontroller to 3.3V.
Figure 4.11 depicts these positions. When the board is powered on, the microcontroller will enter
DFU mode upon boot.

3. Connect to the board to a computer via USB.

4. Use the dfu-util commands to flash the firmware to the board. For more details on using
this software to flash the board, refer to.

5. Once the firmware has been loaded on, power off the board and return the jumper on
JP1 to the “JMP STORE” position. The main board runs off the standard released PYBv1.1 DFU
firmware files available on the Micropython website. At the time of this writing, the most current
version that worked with the main board was pybv11-20191220-v1.12.dfu. [Reference: Steven
Waal’s Thesis Defense]

Once the proper firmware has been loaded onto the board, the main board will appear as a standard
USB device when connected to the computer. At this point, the Micropython files outlined in
Section 4.5 can be loaded on to the board using a standard method for transferring files. Note that
when first loading on the files, make sure that there is no Micro SD card loaded in, as this will
appear instead of the USB device representing the microcontroller internal flash memory. It is
important to load the files onto the internal flash memory and not the Micro SD card. Once this
has been done, the MTB DAQ is ready for operation.

El

Formatting the SD Card

The Micro SD card needs to be formatted according to the SD card association. In order to remove
old data, it is important to completely erase both the “log” and “count” folders and all of the
contents in them. These folders will be remade if they don’t already exist, and the proper files will
be generated upon the next power up of the main unit. If only the “log” file is deleted, the system
will continue counting based off of the “count.txt” file. The data will still be saved, and the proper
number will be displayed on the display of the system, but the numbering will not start over as
desired. Reformatting the Micro SD card is a good way to ensure that it is completely erased and
ready for a new testing session. [Reference: Steven Waal’s Thesis Defense]

Mounting the System
Attaching the MTB DAQ System is fast and easy to do with any bike you might be using.

The OneUp straps slide through the slots in both auxiliary sensor housings, and then they are
placed with the angled surface against the bike so that the strap wraps around the chain stay, fork
housing, or handlebars. It is important to place the cadence sensor on the fork housing, adjacent to
the magnet location on the spokes of the front wheel, so that the wheel speed may be measured if
desired. This sensor should be oriented with the cable port facing the handlebars so that the magnet
is in the range of the hall effect sensor.

The central unit mounts to the middle of the main frame, with bolts going through the designated
holes in the housing through the water bottle boss to secure the unit in place. Make sure the
faceplate with the display screen and indicator lights is face up and visible.

Finally, the ethernet cables plug in to each auxiliary sensor unit, connecting them to the central
unit. Any excess cable should be secured to the bike frame so that it does not interfere with the
rider’s motion. This will prevent injury to the rider and damage to the DAQ system.

Collecting the Data (directly from Steven Waal’s Thesis)

Before powering on the MTB DAQ, make sure both ADXL375 accelerometers are plugged in to
the main unit. The main unit configures the accelerometers upon startup and is not able to re-
configure after the power has been turned on. If the accelerometers are not plugged in before the
power is turned on, turn off the main unit, plug them in, and turn it back on.

The MTB DAQ is powered on and off via the power switch. Power status is indicated by the power
LED (green). Upon power up, the main unit will check for the presence of a Micro SD card. If no
Micro SD card is inserted, “SD” will flash continuously on the display. Once a Micro SD card is
inserted, “SD”” will flash three more times until the main unit detects the card. Once the card has
successfully been detected, the display will show the number of the current data file stored on the
Micro SD card and the record LED (red) will turn off. If the Micro SD card has just been formatted,

E2

the display will show “0” indicating that no data has been logged. The MTB DAQ is now in
standby mode and ready to record data.

Data recording is started by pressing down on the record button. After the first press, the record
LED (red) will turn on and the display will increment the displayed number indicating that the
main unit is recording data. The number that is displayed during and after recording indicates the
number of the data file associated with that recording session. Pressing the record button a second
time will make the record LED (red) turn off indicating that the main unit is done recording. The
display will continue to show the number from that most recent recording session. The main unit
is immediately available for another recording session. When testing is finished, it is best to turn
the main unit off before removing the Micro SD card. [Reference: Steven Waal’s Thesis Defense]

Interpreting the Data

After collecting the data on the Micro SD card, the files on the card should be in the format “.bin’.
Download the MATLAB scripts named “Convert ADXL375 Gyro Datam” and
“Accelerometer Data Testing.m” (Testing script). The first file is used to convert the
accelerometer, gyroscope, and hall effect data from binary to its intended values. The first file is a
function file, so it will be referenced when the testing script is run. To run the testing script, you
must first insert the file name that you wish to process in the line below,

28 filePath = ('datal55.bin');

For the transmissibility metric, our team added a post-processing segment to the testing script. The
post processing of the data includes turning the raw acceleration data into a total magnitude of
acceleration, not dependent on direction. Using the magnitudes, we find the total RMS of the entire
run and calculate the RMS at certain timesteps to make the Transmissibility plot easier to
understand. The timestep is changed based on a factor, which the user can manipulate to change
the timestep. The timestep is calculated to be (factor/1600) seconds. You can change the factor in
the line below,
44 factor = 2000; % Factor used to create RMS timesteps for post processing.

The script will ultimately produce three transmissibility values for the entire run, one for each run
within the script and plots similar to Figure 13.

Troubleshooting and Known Issues

Our team’s project was a continuation of Steven Waal’s Master’s Thesis, in which he designed a
DAQ system consisting of only two external accelerometers. Our team worked off his design and
encountered many problems with his data acquisition system. The following are some of the
problems/bugs we encountered.

Battery Issues

Throughout our time working with Waal’s version of the DAQ, we encountered problems with
the battery design. The DAQ at times would not display the correct message upon bootup or
display no message at all. This could be due to the batteries being dead, even if it happens within

E3

a day or two of no use. Our team believes that the DAQ design is leaking power through one of
the connections, even when it is switched off. If this problem occurs, unplug the batteries from
the ports until you must use the DAQ again. This will keep the batteries charged and ready.

Accelerometer Issues

When operating the DAQ, at least one external accelerometer must be plugged in. The DAQ will
not function correctly if the accelerometer is not plugged in via an ethernet cable. The DAQ will
show it is recording, but the button will not be able to end the recording session.

Display Bugs

Sometimes, when starting a new recording session, the number on the display won’t change.
This is a common bug that happens, but it does not affect the file creation of the recording
session. If another recording session is created, the display will skip the number of the previous
recording and display the correct file number.

Reset Button

On the PCB of the main DAQ, there is a small black button labeled with the word ‘reset’.
Pressing this button does not restart the system, but instead clears all of the program files off of
the MCU. If this button is pressed, the device must be plugged into a computer with USB, and
the files copied back onto the device labeled ‘PybFlash’.

Soldered Connections

If issues not listed above are occurring, they may be the result of broken solder joints. We have
dealt with the display not working properly and identified the issue to be a broken solder joint in
the record button. This button is held in place by solder, and the force of pressing the button can
break the connection. Through visual inspection and voltmeter readings, the PCBs can be
analyzed to find these iss

E4

F - Design Verification Plan & Report

DVP&R - Design Verification Plan (& Report)
I

Project: | F11- MTB DAQ Sponsor: | Dr. Joseph Mello Revision Date:[6/2/22
Test . TIMING
Specification Test Description Measurements Acce_ptapce : _l_iequlrefj Parts Needed | Responsibility Numerical Results Notes on Testing Pass/Fail
Criteria Facilities/Equipment -
Start date | Finish date
1 Main Hub Size Measure physical dimensions of main hub. Lengths 5"%3"x1" or less Calipers or ruler SPIFP Theo 4/18/22 6/2/22 4.96"x2.94"x0.95" All three dimensions pass. Pass
The length exceeds our specification, but the width and depth are
. " Measure physical dimensions of peripheral 1.5"x1.5"x1.5" or . . " " acceptable. These are the important dimensions, as they would .
2 Sensor Housings Size sensor housings. Lengths less Calipers or ruler SPIFP Theo 4/18/22 6/2/22 1.7"x1.2"x1.06 e e [T Y Pass
*Partial Success
3 Weight Weigh entire system (hub, sensors, cables, Mass 500g o less Waeight Scale SPFP Ronan 1822 62122 e Ethernet Cables are too long for device, add much more weight Fail
straps) on scale. than expected.
This test was created with the idea of creating in bulk. Since we
4 Cost Add up entire cost of final system Dollars Under $150 None None Ronan 4/18/22 6222 $700 moved to a testing device design,most of the money spent went on Fail
different iterations.
5 Battery Life Turno-n and nfn-system for target battery Hours 1 Hour or more Norne EP Dylan M8i22 5/26/22 A System was powered on for two hours during testing, and still Pass
life, see if it runs out of power. operated normally.
Remove internal electronics from housings
and replace with paper. Spray with - .
6 Ingress Protection moderate amount of water, and toss dust at Pass/Fail No yvater or dust Water, dust FP Dylan 4/18/22 5/26/22 Fail Exina e bstniated ll'!rough i gthernet por=iand Fail
e in system settled on the PCBs (main and peripheral).
system. See if either has penetrated
housings.
Give system to users with provided 100% pass by _— 9
7 Foolproof manualfinstructions, see if they run into any Pass/Fail user testing (no Customer Survey FP Max 4/18/22 6/2/22 100% EE R b";e e:tﬂteezence vz al Pass
issues. issues) PP)
8 Maxlm;trgr:ge:ordmg Check maximum ilac;rdage capecity of SD Gigabytes 8 gb or more None SP Max 4/18/22 4/18/22 32gb Depends on micro SD card used. Pass
" . " . . " System fits on . " . Passed on all standard road and mountain bikes tested. Failed on .
9 Mounting Universality | Attempt to attach system to variety of bikes. Pass/Fail 100% of bikes Variety of bikes SP/IFP Theo 4/18/22 5/26/22 Fail S sy Fail
. . o L .
10 Aesthetics Survey potential custc_:m ers, askmg_ if they Pass/Fail Over 80% Customer Survey P Ronan 822 62122 a5% 20 students of varying bike experience levels surveyed, all but one Pass
find the system visually appealing Approval approved.
Suspension Tuni Test the system on a mountain biking trail, Scope of project changed, focused became on manufacturing and
11 P ing adjust according to tuning Trail Time Over 5% faster Bike trail, bike FP Max 4/18/22 6/2/22 Fail adding sensors rather than developing complex metrics and testing Fail
Recommendation N) . :
recommendations, and ride again. extensively.

Design Verification Plan & Report (DVP&R)

F1

G - Risk Assessment

designsafe Report
Application:
Description:

Senior Design Project F11 Risk Assesment

Senior Design Project F11 Risk Assesment Analyst Name(s):

This assesment shows the risks and hazards when using our Company:
product. Does not include the regular hazards when riding a
mountainbike because our product is not related to the riding

211672022

Dylan Ruiz, Max Ringrose, Ronan Schaffer, Theo Philiber

Cal Poly San Luis Obispo

portion.
Product Idenfiier: Faciity Locafion: San Luis Obispo, CA
Assessment Type: Detailed
Limnits:
Sources: personnel experiences, ANSI B11 standards, assembly
drawings W-Z
Risk Scoring System: ANSI B11.0 (TR3) Two Factor
Guide sentence: When doing [task], the [user] could be injured by the [hazard] due to the [failure mode].
Status /
Initial Assessment Final Assessment Responsible
User/ Hazard / Severnly Risk Reduction Methods Severily IComments
Hem Id Task Failure Mode Probability Risk Level fControl System Probabiliity Risk Level fReference
1-141 Mountain Bike Rider slips / trips / falls - User Moderate Medium Include instruction manual Moderate Low TBD
nomal operation Interference with Wires / Likely giving step by step Unkikely Theo
Housings instructions on how to install
User does not install product device, other design change,
correcily, wires and housing fixed enclosures / bariers
are in the path of the user
when riding a mountain bike.
1-1-2 Mountain Bike Rider fire and explosions : Battery Serious Medium Create the housing with a Serious Low Complete [2/16/2022]
nomal operation Explosion Unlikely sturdy matenial (we wil just Remote Ronan
Batteres explode when be using PLA) and incease
mpacted with high force thickness of housing, waming
label(s)

Gl

- Test Procedures

By Team F11 - MTB DAQ
Theo Philliber
Dylan Ruiz
Ronan Shaffer
Max Ringrose

Created: March 7, 2022
Revision: 2

HI

i- A a1l :
car” pPorLy

Furpose

To ensure our design for the mounting apparatus will effectively apply to any bike frame, without the effect of
distorting data.

Test Equipment Required

s Helmets for rider and attendees
s Rider for each bike

* Stopwatch

e Tape

e (Calipers

Hazards

Most hazards will be bike-riding related. All attendees will be positioned uphill from the rider, except the person
taking the time. The person taking the time will stand at a comfortable distance from the bike path.

Safety Issues Responses
Rider crashes bike while riding. While this is a possibility, the rider will be experienced and will be wearing
the proper safety gear.
Rider crashes into others. The people conducting the tests will not stand in the path of the rider, and

the one taking the time at the bottom of the downhill segment will be
standing at a minimum of 20 feet from the path.

Wires interfere with the rider. The wires will be tied to the frame of the bike, allowing enough clearance
between the rider’s natural pedal path and the wires.

Procedure
1) Gather ten different bike models and riders (Friends and people from bike club).
2) Go to a short, dedicated segment on a bike trail.
3) Set all bikes” suspension settings to similar settings (max rebound and compression dampening)

4) Mount the DAQ to the water bottle boss and the accelerometers to both the rear axle and front axle on one
of the bikes.

5) Mark the position of the Accelerometers using tape.

6) Coordinate start of segment riding with stopwatch person. Press the Record button on the DAQ.

7) Driver rides segment to finish at ~ 5 sec.

8) Press the Record button on the DAQ to stop recording. Stopwatch person inspects the accelerometer’s
position from the tape using calipers. Records the movement of the accelerometer from initial position.

Repeat steps 4-7 to sample each bike.

9) Analyze the data, accelerations should be within the same magnitude of each other.

H2

i- A a1l :
car”pory °

Results

Pass:

e Accelerometer displacement must be less than .2in
e Data between bike models should be reasonably similar

Fail:

e Accelerometer displacement is greater than .2in
* Data between bike models is distorted (RMS values of acceleration should be within +/- 1g of control data)

Test Dates:

Test Results:

Table 1. Accelerometers Offset

Bike Model
(Insert Bike models here)

Front Axle Accelerometer Displacement (in)

Rear Axle Accelerometer Displacement (in)

H3

By Team F11 - MTB DAQ
Theo Philliber

Dylan Ruiz
Ronan Shaffer

Max Ringrose

Created: April 5%, 2022
Revision: 1

H4

i = cllldllilc)
caL PoLy

Purpose

The purpose of this test is to validate that the DAQ meets the subjective criteria of “aesthetics’ and ‘foolproof-ness’.
These will both be performed by surveying people to represent customers.

Scope

The scope of this protocol is to validate the aesthetic appeal and ease-of-use of the DAQ unit. Since both
specifications will be performed by directly surveying customers, they will be performed at the same time and are
laid out together in this document. The ease-of-use specification will be tested by providing users with a basic
manual and the DAQ and letting them operate it. The aesthetics will be a numerical scoring by the users after they
have tested it out.

Equipment
The following list requires all equipment necessary to complete this test protocol.

¢ DAQ Unit (Full Prototype)
+ People to survey

Hazards
There are no potential hazards to this procedure.
PPE Requirements
+ None
Facility
This test will take place anywhere people agree to meet on an individual basis.
Procedure

1. EASEOF USE:
a. Meet with a person who agreed to be interviewed (hereafter referred to as the user)
b. Provide user with operating manual and DAQ.
c. Allow user to attempt to use DAQ system, providing minimal feedback or guidance.
d. Afterwards, ask user of any issues they had operating the device, and ask to rank the ease-of-use
ona 1-10 scale.
2. AESTHETICS
a. After user has gotten familiar with operating the system, ask them to rank the aesthetic appeal of
the device on a 1-10 scale.

Results

e EHase-of-Use Pass Criteria: No major user issues, average rating of 8 or higher.
s Aesthetics Pass Criteria: Average rating of 8 or higher.
e Number of Samples: 3

Test Date:

Test Results:

HS5

User # Ease of Use Aesthetics Comments

1 10 10 -

2 10 9 Dislikes cables

3 10 9 Cables too long

4 10 10 -

5 10 9 Profile too big

6 10 10 Likes main DAQ enclosure
7 10 10 Likes main DAQ enclosure
8 10 10 -

9 10 10 Likes main DAQ enclosure
10 10 9 Cables too long

11 10 8 Cables too long

12 10 10 -

13 10 10 -

14 10 10 -

15 10 9 Dislikes sensor housing prints, too “blocky’
16 10 10 -

17 10 9 Cables too long

18 10 9 Cables too long

19 10 10 Likes main DAQ enclosure
20 10 9 Cables too long

AVYG: 10 9.5 Nobody had issues with operating or connecting the device.

Everybody liked the aesthetics, with the only common
complaint being the length/size of the cables.

H6

Engineering

car“pProry Y

Test

By Team F11 — MTB DAQ
Theo Philliber
Dylan Ruiz
Ronan Shaffer

Max Ringrose

Created: March 7%, 2022
Revised: April 21*, 2022
Revision: 2

H7

rngineering
CAL POLY

Purpose

To evaluate the extent to which the housings protect the sensitive electronic components contained inside.

Scope

This test 1s for the waterproof/dustproof feature of the housings

Equipment
The following list requires all equipment necessary to complete this test protocol.

- 3Dprinted housings
- Mock ethernet cable
- Paper or tissue

- Tape

- Water

- Dirt/dust

Hazards
N/A
PPE Requirements
None
Facility
Teammate’s backyard
Procedure
1) Remove electronics from housings
2) Insert tissue paper in housing
3) Plug mock ethernet cable into port
4) Splash water by hand or spray water with bottle or hose at housing, especially at port opening
5) Remove tissue paper and inspect for water marks
6) Replace with fresh tissue paper, surrounded with tape, sticky side facing outwards
7) Plug mock ethernet cable into port
8) Throw dirt at housing, especially at port opening

9) Remove tape and inspect for dirt/debris accumulation

H8

10) Write down notes from visual inspection with a 0-10 rating for ingress protection
0- Water: Soaking wet tissue paper, lots of water inside
Dirt/Debris: Tape is covered with dirt/dust
10— Water: Bone dry tissue paper, no trace of moisture

Dirt/Debris: Perfectly clean tape, no trace of dirt or debris

Results
Pass Criteria: 9/10 for both water and dirt
Fail Criteria: 8/10 or lower

Conduct each test 3 times for both main and auxiliary housings to ensure accuracy/repeatability of result
Test Date(s):

Test Results:

Performed By:

H9

By Team F11 - MTB DAQ
Theo Philliber

Dylan Ruiz
Ronan Shaffer

Max Ringrose

Created: April 5%, 2022
Revision: 2

HI0

i ~a LVAEL LA 111
caL“ " PpoLyY

Purpose

The purpose of this test protocol is to validate the battery life of the DAQ system during operation. Specifically, to
verify that the duration of operation on a single full charge meets specification.

Scope

The scope of this protocol is to validate the battery life of the DAQ system during operation. The life of the battery
will be estimated by measuring the current and voltage used by the system and calculating the power from this. This
will be compared with the battery capacity to calculate how long the DAQ will run on a single charge.
Equipment
The following list requires all equipment necessary to complete this test protocol.

* DAQ Unit

* Multimeter

e Jumper wires

Hazards

The hazards of this test are entirely based on the batteries. Electric shock can occur, but will not likely be harmful at
the low current and voltages supplied. The other risk could be from puncturing the pouch-style batteries, which can
then become explosive. Care should be taken with the batteries to not puncture them.

Hazard Danger Level | Likelihood Preventative Action

Battery Puncture Dangerous Low Following the procedures should have little to no
possibility of puncturing the batteries. If the batteries
aren’t easily going back in when closing the case, take
them back out and reseat the wires so they fit better.

Electric Shock Low Medium Power system off before making changes to wiring or
measuring the current and voltage.

PPE Requirements
s Safety Glasses
Facility
This test will take place in the ME 305/405 Laboratory, or anywhere with a multimeter.
Procedure

1. VOLTAGE MEASUREMENT:
a. Setthe multimeter to voltage mode.
b. With the DAQ off, connect the multimeter probes to the positive and negative terminals of the
battery.
Power the DAQ and mark the voltage.
d. Try other operations on the DAQ (start/stop recording, ete.) and observe (if any) changes in power
consumption from the DAQ. Power on and off DAQ twice and observe changes.
2. CURRENT MEASUREMENT:
Power the DAQ off and set the multimeter to current mode.
Disconnect the battery from the PCB board via the quick-connect jack.
Plug a jumper wire from the ground terminal of the quick-connect to ground terminal on PCB.
Connect multimeter wire to positive terminal of battery and to PCB.
Power the DAQ and read the current.
Power on and off DAQ twice more and observe any changes in current.

o

s I - o R < S

HI1

= Mechanical
BEngincering

Results

e Pass Criteria; Voltage stays above 3.5V for at least one hour of continuocus operation.

Test Date: 5/9/22

Test Results: PASS

Time (mins) Voltage (V)
0 3.88
0.1 3.83
] 3.81
10 3.81
30 3.81
60 3.80
90 3.80
120 3.80
150 3.80
180 3.79
360 3.79
A
3.95
3.9
3.85
E 3.8 =5 e
<)
@ 3.75
G
> 37
3.65
3.6
3.55
3.5
0 50 100 150 200 250 300 350 400
Time [hr]

Based on the data collected in this test, the battery will last for far longer than one hour. Tt loses some
voltage immediately, but then stays mostly consistent for our 6 hour test range, far exceeding our
specification of over 3.5V for 1 hour.

HI2

~Mechanical
Engineering

Y

By Team F11 - MTB DAQ
Theo Philliber
Dylan Ruiz
Ronan Shafter

Max Ringrose

Created: March 7%, 2022
Revision: 2

HI3

~Mechanical
Engineering

Purpose

The purpose of this test protocol is to validate the speed collected by the Allegro MicroSystems APSI2205SLUAA
hall effect sensor is accurate and precise for all conditions of riding.

Scope

The scope of this protocol is to validate the hall effect on a benchtop truing stand using a calibrated rotational speed
sensor. The results of the speed collected by the hall effect will be compared with the calibrated rotational speed
sensor. The goal of this test is to develop code that will provide speed accuracy of + 3% using the hall effect sensor
as the independent variable and the rotational speed sensor as the control. The dependent the code constant of spoke
magnet radius » will be modified until trials achieve the accuracy criteria.
Equipment
The following list requires all equipment necessary to complete this test protocol.

s 29" MTB Wheel

e 15x110 MTB through-axle

* Wheel Truing Stand

e 2 C-clamps

e Wahoo rpm cycling speed sensor

s MTB DAQ Front sensor and main DAQ

® Spoke Magnet

e Drill Adapter

e Cordless drill

Hazards

The hazards of this test include the wheel rotating at high speeds so stay clear of the spokes of the wheel. Ensure that
the axle is secured in the truing stand and the truing stand is secured to the table. Make sure the drill is held firmly
and to use lower speeds. If something is to be tangled in the wheel, immediately stop the drill.

PPE Requirements
e Safety Glasses
Facility
This test will take place in the ME 305/405 Laboratory.
Procedure

1) Using the 2 C-clamps, attach the truing stand to a desktop.
2) Attach the 29”7 MTB wheel to the Truing stand using the through-axle and end nuts.
3) Attach the drill adapter to the axle and secure the drill to the adapter.

4) Begin rotational trials. Record speeds every 10 seconds for 2 minutes.

Note: Stay clear of the spinning wheel

H14

Results

e Pass Criteria: = 5% percent etror of rotational speed sensor

e Number of Samples: 5 tests, 2 minutes long

Test Date:

Test Results:

Speed #1

Speed #2

Speed #3

Speed #4

Speed #5

Speed #6

Speed #7

Speed #8

Speed #9

Speed #10

Speed #11

Speed #12

Trial 1

Trial 2

HIS5

Trial 3

Hall Effect

Rotational Speed Sensor

Trial 4 Trial 5

I —1BOM (Indented Bill of Materlals)

Indented Bill of Material (RO

Assy Level Part Number Descriptive Part Name Qty Part Cost Total Cost Source More Info
It Ivli Ivi2 Ivl3 D4
0 10000 Final Assy
1 1.1.0.00 |- Main DAQ
2 11100 \ |- Housing Assy
3 11110 \ I |- Heusiss 1 Gustor 3D Prned.in PLA
3 11120 | | |- Bolts 2 £y 031 § 0.62 e hitps:/farvewe. mem as M08 350 LONG HEX CAP SCREW
3 11130 | | |--- Rubber Pad 1 [899 § 899 Amazon hittps:/fwrww. am az et 3M Self-Stick Rubber Anti-Skid Pad
3 1.1.1.4.0 | | |--- OneUp Strap 1 b 1650 § 16.50 Amazon hitps:/farwewe. amaz o OnelUp Components EDC Gear Straps Grey, Pair
2 11200 | |- Power Switch 1§ 196 5§ 196 Digikey lnttps farwew digikey Rocker Switch SPST 104 (AC) 125 V Pancl Mount, SnapIn
2 11300 | |--- Quick Connect Cable Crimp 4 & 161 § 6.44 Digikey hittps:/ farww. digikey CONIT QC RCPT 14-18AWG 0.187
2 11400 | |--- Receptacle Sleeve 4 £ 018 § 072 Digikey hittps:/fwww. digikey CONIN RCPT SLEEVE 0.187 1POS CLR.
2 1.1.5.0.0 | |- Ribbon Cable 1 § Digikey hittps:/Fwrww. digikey CABLE ASSEM 05" 10POSF-F 2"
3 11600 | |--- Ethernet Cables 2] 505 § 10,10 MM hittps:/fwww.memas 3 ft Ethernet Cord RI45
2 1.1.7.00 | |--- Thread Locker 001 § 1535 § 015 el hitps:/fwww memas ADTUSTABLE THREAD LOCKER, 0.34 OZ. CAN
2 11800 \ |- PCB Assy
3 1.1.8.1.0 | | |--- FCB 1 § 5400 8 54.00 JLCPCB Custem printed circuit board for main DAQ
3 11820 | | |- Gyroscope QMEU-3050) 1] 82 § 8.26 Digikey hitps:/ farvwew. digikey GYROSCOTRE PC 24-QFH (4x4)
3 11830 | | |- Batteries Assy §
4 11831 | | | |--- 370 mAh Battery 4 5 949 § 37.96 Digikey hitps:/fwwewe digikey 3.7 V Lithium Polymer Battery Rechargeable (Secendary) 370mAh
4 11832 | | | |--- 1.2 Ah Battery 1] 995 § 8.95 Digikey hitps:/farwew. digikey 3.7 V Lithium -Ton Battery Rechargeable (Secondary) 1.24h
3 11840 | | |--- Accelerometer (ADXL375) 1 $ 1124 § 11.24 Arrow hittps:/ farw . arr ow. Accelerometer Triple £200g 2.5V/3.3V 14-Pin LGA T/R
3 11850 | | |- Accel Breakout Board 1] 779§ 779 DigiKey hitps:/fwww. digikey LGA-14 TO DIP-14 SMT ADAPTER
3 1.186.0 | | |--- Ferrite Bead 1] 026 % 0.26 DigiKey hitps:/ farvew. digikey 30 Ohms @ 100 MWHz 1 Power Line Ferrite Bead 06032, 64 8mChm
3 11.87.0 | | |--- 0.1 pF Capacitor & [0.15 § 0.90 DigiKey hittps:/farww. digikes 0.1 pF £10% 50V Ceramic Capacitor 7E. 1206
3 11880 | | |- 1 pF Capacitor 2 [013§ 026 Digikey hittps:/fwww. digikey comiproduct-detailfenfkem et/ COBO5SC105K4RACTU/ 395-1284-1-NDy4 16060
3 11850 | | |--- 2.2 pF Capacitor 2 5 025 § 0.50 Digikey hitps:/ farvew. digikey.c om/product-detailfenideemet! CORBOSC225K BRACATUT O/395-6951-1-19D/331445%
3 1.1.810.0 | | |--- 4.7 pF Capacitor 3. 5 013 § 0.3% Digikey hitps:/farwew. digikey.c om/product-detailfendeemet! CORBOSCATSK SPACTU/399-3134-1-1D/55163%
3 118110 | | |--- 10 pF Capacitor 1 $ 013 § 0.18 DigiKey https:diwrwew. digikey 10 uF £10% 25V Ceramic Capacitor 35R 0803
3 1.1.8.12.0 | | |--- 2 pF Capaciter 2 b 129 § 258 Digikey hitps:/farvew. digikey ¢ om/product-detailfendcemet! CBROBC203B A GAC/399-8701-1-ND/3480301
3 118130 | | |--- 24 pF Capacitor 2 5 149 8 2.98 Digikey hitps./ farvewe. digikey ¢ om/product-detailfendcemet! CBROBC240IA GAC/399-8758-1- ND/3481277
3 118.14.0 | | |- 2000 pF Capacitor 1§ 002 § 002 Digiey ttp ferve . digikes 2200 pF £10% 50V Ceramic Caparitor 7B, 0402
3 118150 | | |--- Schottsky Diode 1 [035 § 035 Digikey hitps:/fwww. digikey DIODE 3CHOTTE Y 20V 1A SOD123W
3 1.1.8.16.0 | | |- Mini-B USB Jack 1] 108 § 1.08 Digikey hittps:/fwww. digikey SMT USB Jack for USE Mini-B cable
3 1.1.817.0 | | |--- Quick Connect 0.187" 1] 023 § 0.23 Digikey https:/fwrwew. digikey.c oméproduct-detailfenimol ex/019708401 1/ Wh6456-NDW459342
3 118180 | | |--- BT45_SURFACE_MOUNT 2 £ 160 § 3.20 Digikey hittps:/fwrww. digikey SMT RJ45 Jack for ethernet cable
3 1.1.8.18.0 | | |--- Blue LED 1 & 018 § 0.18 Digikey hitps:/fwww. digikey LED ELUE CLEAR 0805 SNMD
3 1.1.8.20.0 | | |--- Green LED 1 b 013 § 0.18 Digikey hitps./fwww digikey LED GREEN CLEAR 0805 SND
3 118210 | | Red LED 1 & 018 § 0.18 Digikey hittps:/farwew. digikey LED RED CLEAR 0805 SMD
3 118220 | | |- ¥ellow LED 1 9 018§ 0.18 Digikey hittps:/fwrww. digikey LED YELLOW CLEAR 0805 SMD
3 1.1.8.23.0 | | |--- LIPO Charger 1 b 056 § 0.56 Digikey hitps:/fawew. digikey IC CONTROLLR LIION 4.2V 5CT23-5
3 118240 | | |--- 100 K Resistor 5] 010 § 0.50 Digikey hitps:/ farww. digikey RES SWD 100K OHM 1% 1/3W 0803
3 11.825.0 | | |--- 10 KQ Resistor 1 & 0.50 § 0.50 Digikey hittps:/farwwe. digikey RES SMD 10K OHB 0.1% 1/4W 0805
3 1.1.8.26.0 | | |--- 4.7 EQ Resistor 2 $ 010 § 0.50 Digikey hitps:/farww digikey CRGCQ 0805 4K7 1%
3 1.1.827.0 | | |--- 560 Q Resistor & b 010 § 0.60 Digikey hitps:/farwewe. digikey RES SMD 560 OHM 1% 1/8W 0805
3 11.828.0 | | |--- 22 G Resistor 2 | 0.10 § 0.20 Digikey hittps:/farww. digikes BES SMD 22 CHM 1% 1/8W 0805
3 1.1.8.28.0 | | |--- Reset Switch 1] 041 § 041 Digikey hittps:/fwww. digikey SWITCH TACTILE SPST-NO 0.054 12V
3 1.1.8.20.0 | | |--- 5D Slot 1 b 245§ 245 Digikey hitps:/ farvewe. digikey CONN MICRO 5D CARD PUSH-PUSHE/A
3 1.1.831.0 | | |--- Microcentroller 1 £ 1161 § 11.61 Digikey hitps:/ farvewe. digikey STM32F405RGTS - IC MCU 32BIT 1MB FLASH 64LOFP
3 1.1.832.0 | | Voltage Regulator 1 & 042 § 0.42 Digikey hittps:/ farww. digikey IC REG LINEAR 3.3V 14 SOT223
3 118330 | | |--- 10-Pin Connector Header 1 i 278 § 278 Digikey hitps:/fwww. digikey CONN HEADER SMD 10POS 1.27MM
3 1.1.8.34.0 | | |--- 12 MHz Clock 1 5 050 § 0.50 Digikey hitps:/fwwew. digikey CRYSTAL 12.0000MHZ 18FF 5D
3 1.1.835.0 | | |--- 32768 KHz Clock 1] 077§ 0.77 Digikey hitps:/ farwew. digikey CRTSTAL 32 7680KHZ 6PF SMD
3 118360 | | |-~ Tumper % & 031 § 062 Digikey hitps:/fwww. digikey TUMPER WI/TEST PIT 1302PINS 254N
3 1.1.8.27.0 | | |- Battery Connector 2 i 186 § 372 Digikey hitps:/farwewe digikey CONN HEADER 3MD R/A 2POS 2WM
3 1.1.8.38.0 | | |--- 3 Pin Header 4 5 013 § 0.52 Digikey hitps /e digikeys CONN HEADER VERT 3POS 2.54h
3 1.1.83%.0 | | |- 2K £ Resistor 10 & 047 § 474 Digikey hitps:/fwww. digikey RES SMD 2K CHM 0.1% 1/4W 0805
3 118400 | | |- 44.2 G Resistor & § 064 § 384 Digikey ttps /farwe digikes RES SMD 4.2 OHM 0.1% 14 0805

I1

3 118410 | | |--- 80.6 £ Resistor 4 [064 § 2.56 Digikey hittps:/fwww. digikey RES SMD 80.6 OHM 0.1% 1/4%W 0305
2 11900 | |- U Board Assy
3 11910 | |--- TIBOARD PCB 1 § 3455 % 34.55 JLCECB VI BOARD PRINTED CIRCUIT EQARD
3 113920 | |--- LED HOLDER 1 custern 3D Printed LED helder
3 113930 | |--- 7 SEGMENT DISPLAY 1 b 995 § 9.95 Adafruit hitps:/ farvewe. adafrui Quad Alpt ic Display - Red 0.54" Digits w/ I2C Backpack
3 11940 | |--- CHG 1 £ 249 § 249 Digikey hitps:/ farvewe. digikey PHL MINT W/ WIRE 550MM 25MCD YLW
3 119.5.0 | |--- FWER. 1] 249§ 249 Digikey hittps:/ farvew. digikey PNL WMINT W/ WIRE 568NN 25MCD GEIT
3 113960 | |- R1.R3 2 § 066 § 1.32 Digikey https:/Farww. digikey RES SMD 44.2 OHM 0.1% 1/4W 0805
3 11870 | |- k2 1 5 062§ 0.62 Digikey hitps:{fwwewe. digikes RES SMWD 80.6 OHM 0.1% 1/4W 0805
3 11380 | |_R4 1§ 010 § _ 0.10 Digikey ttpe./fuwew.digikey CRGCQ 0805 4K7 1%
3 11990 | |- EEC 1 [249 § 249 Digikey hittps:/ farww. digikey PNL MNT W/ WIRE 625MM 25MCD RED
3 1.1.9.10.0 | |- STANDCOFES 2 [1183 § 11.83 Memaster hittps:/fwww memas Splined Press-Fit Threaded Standoffs with Open End; Mindature, 24mm OD, 2mm Long
3 119110 | |- Us4 1 & 852 § 8.52 Digikey hitps./ farwew. digikey SWITCH PUSHETUTTON SPST-IO 24 48V
3 1.19.12.0 | |- X1 1 [278 § 278 Digikey hitps:/fwrww. digikey CONIN HEADER SMD 10POS 1.27NMM
3 11.9.13.0 | |- #3 Washer 1 [282 § 2,82 McM: hittps:/fwww memas 316 Stainless Steel Washer; for Number 3 Screw Size, 0.108" ID, 0.25" CD
£l 1.1.9.14.0 | |- 14" Spacer 4 b 027 § 1.08 MM hitps:/fwww.memas Aluminum Unthreaded Spacer, 14" OD, 3/16" Long, for Number 2 Screw Size
3 119150 | |- M1 Washer 1 § 384 % 3.84 Melf httpe/fwrwrwe.mcmac 18-8 Stainless Steel Washer for M1 Serew Size, 1.1 mm ID, 3.2 mm OD
3 119160 | |- 11x0.25mrm Slotted Screw 1 $ 800 § 8.00 Ml https:diwrwew. memas 18-8 Stainless Steel Narrow Cheese Head Slotted Serews, M1 3 0.25mm Thread, 10mm Long
1 12000 |- Front Sensor e
2z 12100 | |--- Housing Assy s
3 121.1.0 | | |- Housing 1 custorn 3D Printed in PLA
3 12120 | | | strap 1§ 1650 $§ 1650 Oneup https:/fwww.eneupc 14" stretch polyurethane strap with tail clip
2 12,130 | | WEX0.5 Brass Inserts 4 b 050 § 2.00 el hitps./fawwe. mom as Brass Heat-3et Inserts for Plastic; M3 x 0.50 mm Thread Size, 5.700 mm Installed Length
3 121490 | | |- M30.546 Screw 4 & 042 § 1.66 Meld hitps:/farww.memas Stainless Steel Pan Head Screws; with External-Tooth Washer, M3 2 0.5 mm Thread, 6 mm Long
3 12150 | | |- 1/4" Washer 4 [010 § 040 MM hittps:/fwww memas 316 Stainless Steel Washer; for 14" Screw Size, 0.281" ID, 0.625" OD
2 12200 | |- Front PCE Assy
3 12210 | |- Accelerometer (ADXL375) 1 £ 1124 § 11.24 Arrow hitps:/fawewe.arrow. Accelerometer Triple £200g 2.5V/3.3V 14-Fin LGA T/R.
3 12220 | |--- Hall Effect Sensor 1 & 093 § 0.98 Digikey hittps:/ farww. digikey Digital Switch Latch Open Drain Hall Effect 3-SIP
3 12230 | |- Speke magnet 1 b 500 § 5.00 EEI hitps:/ farwewe rei com MSW Universal Speed Sensor Spoke Magnet
3 12240 | |- PCB 1 § 3400 § 34.00 ILCPCB Custem printed circuit board for rear sensor
3 122350 | |--- OF. Gate 1] 029 § 0.28 Digikey hittps:/ farww. digikey IC GATE OR 1CH 2-INP 3C70-3
3 12260 | |~ RI45 Jack 1§ 160 $ 160 Digikey ttps:/fwww, digikey R145 Tack for ethemet cable
3 12270 | |- Ferite Bead 1 [010§ 0.10 Digikey hittps:/fwww. digikey FERRITE BEAD 30 CHM 0805 1LN
3 122380 | 0.1 pF Capacitor 2] 015 § 0.30 Digikey hitps:/fwrwew. digikey CAP CER 0.1UF 25V TR 0805
3 12290 \ |- 10 uF Capacitor 1 § 016 § 016 Digikey ttps:/fwww.digikey CAP CER 10UF 10V X5R 0805
1 13000 | Rear Sensor
2 13100 |- Rear Housing Assy
3 13110 | |- Housing 1 custom 3D Printed in PLA
3 13120 | | Strap 1§ 1650 § 1650 Oneup https:/fwww.eneupc 14" stretch polyurethane strap with tail clip
£l 13130 | |--- 1I330.5 Brass Inserts 4 b 050 § 2.00 el hitps:/fwww.mom as Brass Heat-3et Inserts for Plastic, M3 x 0.50 mm Thread Size, 5.700 mm Installed Length
3 13140 | |- M330.5X6 Screw 4 § 042 § 1.66 MM httpe:/fwrwrwe. mem ac Stainless Steel Pan Head Screws; with External-Tooth Washer, M3z 0.5 mm Thread, 6 mm Long
3 13150 | |- 14" Washer 4] 010 § 0.40 MM hitps:/farww.memaz 316 Stainless Steel Washer, for 14" Serew Size, 0.281" ID, 0.625" CD
2 13200 |- Rear PCE Aissy
3 13210 |- Accelerometer (ADIL375) 1 & 1124 % 11.24 Arrow hitps:/farwew. arrow. Accelerometer Triple £200g 2.5V/3.3V 14-Fin LGA T/R.
3 13220 1 $ 3400 § 3400 JLCPCB Custom printed circuit board for front sensor
3 13230 |- OR. Gate 1 [029 § 0.28 Digikey hittps:/fwww. digikey IC GATE OR 1CH 2-INP SC70-5
2 13240 |- BI45 Jack 1 b 160 § 1.60 Digikey hitps:/ farvwewe. digikey RI45 Jack for ethernet cable
3 13250 |- Ferite Bead 1 5 010 § 0.10 Digikey hitps./fwwewe. digikey FERRITE BEAD 30 OHM 0805 1L
3 13260 J--- 0.1 pF Capacitor 2 $ 015 § 0.30 Digikey https:/iwrwew. digikey CAP CER 0.10F 25V 7R 0805
3 13270 |--- 10 pF Capaciter 1 b 016§ 0.16 Digikey hitps: /e digikey CAF CER 10TF 10V 3R 0805
1 2.0.0.0.0 Solder Stencil 1 § 2800 % 28.00 ILCPCB (CUSTCM)
Total Parts 177.01 438 52 489.50

12

J — Total Expenditures

Team F11 MTE DAQ Senior Project Budget

Itern Description Quantity Wendor Wendor Part Mo, F11Part No. Cost S&H+ Tax Purchase Method Account Date Purchasad Location
Al Enclosure 2 Digi-Key HIIB90-ND 1.0.0.00 B 41,32 S 8.61 Reimbursement RMS A4/21/2022 Bonderson
Jumper 2 Digi-Key 732-2678-ND 11.8.36.0 s 0.62
Switch Rocker 2 Digi-Key EG1526-MD 1.1.2.0.0 S 3.92
Wire Sleeve 2 Digi-Key 2-170823-8-51-ND 1.1.4.0.0 S 1.68
Conn. Receptor 8 Digi-Key A110952CT-ND 1.1.3.00 s 168
Rbn Cable 2 Digi-Key SAMIBE39-ND 1.1.50.0 S 3230
Conn. Tab 4 Digi-Key WAL4275CT-MND 1.1.8.17.0 S 0.52
Conn. Mod Jack 10 Digi-Key RICSES38001CT-MD 1.1.8.18.0 S 16,31
Conn, Head 2pos 4 Digi-Key 3-292173-2-51-ND 11.8.37.0 s 372
1 uF Capacitor 12 Digi-Key 393-CO805C105KARACTI00CT -ND 1.1.88.0 < 125
4.7 uF Capacitor 10 Digi-Key 311-3422-1-ND 1.1.8.10.0 S 118
2 pF Capacitor 10 Digi-Key 399-8701-1-MND 1.1.812.0 S 10,21
24 pF Capacitor 10 Digi-Key 399-8758-1-ND 11.813.0 s 11.78
2.2 uUF Capacitor 10 Digi-Key 587-3421-1-ND 1.1.88.0 S 1.49
10 uF Capacitor 16 Digi-Key 399-11939-1-MND 1.1.8.11.0 S 291
Schottkey Diode 4 Digi-Key 1727-5191-1-ND 1.1.8.15.0 S 1.76
USE Mini B RCPT) Digi-Key WASAELCT-ND 118160 S 4.26
Conn, Head 3pos 4 Digi-Key 732-5316-ND 118380 S 0.52
Ferrite Bead 120 2 Digi-Key 732-1613-1-MND 1.1.8.6.0 S 1.76
Blue LED 4 Digi-Key 732-4932-1-MND 1.1.8.19.0 S 0.72
Green LED 4 Digi-Key 732-4935-1-ND 118200 § 072
Red LED 4 Digi-Key 732-49385-1-ND 11.821.0 S .72
Yellow LED 4 Digi-Key 1516-1088-1-MND 1.1.8.22.0 S 1.28
320 ma&h Battery 10 Digi-Key 1908-LP402535] U+PCAWY ZWI RESS0MN-MND 1.1.831 S 86,63
100k Resistor 14 Digi-Key ALZB415CT-ND 118240 S 172
2k Resistor 10 Digi-Key A110572CT-ND 11.8.39.0 S 4.74
4.7k Resistor 14 Digi-Key A129757CT-ND 1.1.8.26.0 S 0.81
560 Resistor 16 Digi-Key AL26376CT-MND 11.827.0 S 118
22 Resistor 10 Digi-Key AL26352CT-ND 11.828.0 s Q.56
Tactile Switch 2 Digi-Key EGA375CT-ND 1.1829.0 s 0.95
MAicrosSh Conn 2 Digi-Key WhA24066CT-MND 1.1.8.30.0 S 7.32
12 MHz Crystal 2 Digi-Key AC1289CT-ND 1.1.8.34.0 S 0.80
Yellow Indic, 2 Digi-Key 492-1576-ND 1.1.9.4.0 s 5.88
Green Indic. 2 Digi-Key 492-1571-ND 1.1.9.5.0 s 5.88
44.2 Resistor 6 Digi-Key A110413CT-MND 1.1.8.40.0 S 3.84
80.6 Resistor 4 Digi-Key A110438CT-ND 1.1.841.0 s 2.56
Switch Button 2 Digi-Key EG5385-ND 119110 s 19.78
0.1 uF Capacitor 18 Digi-Key 399-C0805C104K 3RACTE00CT -MND 1.2.2.8.0 s 1.64
10 uF Capacitor 18 Digi-Key 1276-6456-1-MND 1.2.2.9.0 S 1.58
Accelerometar 5 Digi-Key 505-ADXL37SBCCZ-MD 1.3.2.1.0 S 53,45
Gyroscope 1 Digi-Key 1428-1001-1-MNDr 1.1.82.0 s 949
1C Gate 5 Digi-Key 296-SN74AHCIG32DCK3CT-ND 1.2.2.5.0 s 2,20
ICWoltReg 2 Digi-Key 488-MCPS6ELMMN33T 2GCT -MND 1.1.8.32.0 S 318
10pos Conn, 4 Digi-Key 1175-2643-1-ND 1.1.8.33.0 < 348 3 3547 Reimbursement RMS A4/19/2022 Bonderson
22.768 kHz Crystal 2 Digi-Key 2388-5WS834ED16-32, TESK-ND 1.1.8.35.0 S 396 S 9.34 Reimbursement RMS 441972022 Bonderson
Gyroscope 1 Digi-Key 1426-1001-1-MND 1.1.82.0 B 8.26
Hall Effect Sensor 1 Digi-Key 620-1964-ND 1.2.2.2.0 S 0.98
320 mAh Battery 4 Digi-Key 1908-LP40253 5] U+PChH 24| RESSORN-MND 1.1.8.3.1 S 41,76 S 12,60 Reimbursement RIS 2/7/2022 Bonderson
Rubber Pad 1 Amazon - 1.1.1.3.0 3 8.89
COnelUP Strap 1 Amazon - 1.1.1.4.0 S 1999 % 2,53 Reimbursement IR 11/4/2021 Bonderson
Solder Stencil 4 JLC 73145000 2.0.0.0.0 S 28.00
PCB 25 LT Y9-12 1.1.8.2.0 S 2160 S 86,39 Reimbursement MR 4/20/2022 Bonderson
Breakout Board 1 Amazon - 1.1.8.5.0 B 1299 S 1.14 Reimbursement IR 2/13/2022 Bonderson
AT z Charlie Refvermn - 1.1.8.31.0 5 30,00 S - Reimbursement TIP A4/5/2022 Bonderson
Total S 54283 S 15608
| GrandTotal |3 698.91 |

J1

	1. Design Updates
	2. Manufacturing
	2.1 Procurement
	2.2 Outsourcing & Manufacturing
	2.3 Assembly

	3. Design Verification
	3.1 Specifications
	Main Hub Size
	Sensor Housings Size
	Weight
	Cost
	Battery Life
	Ingress Protection
	Foolproof
	Maximum Recording Storage
	Mounting Universality
	Aesthetics
	Suspension Tuning Recommendation

	3.2 Tests and Results
	Metric Testing
	Accelerometer Calibration Verification

	3.3 Challenges and Recommended Testing
	Debugging and Troubleshooting
	Procuring Materials and Components
	Metric Testing Challenges
	Recommendations for Testing

	4. Discussion and Recommendations
	5. Conclusion
	References
	Appendix
	A - Main DAQ Python Code
	B - Gyroscope Driver Python Code
	C - Data Processing MATLAB Code
	D - Converting Data MATLAB Code

	E - User Manual
	Operation of DAQ System
	Flashing the Main DAQ (directly from Steven Waal’s Thesis)
	Formatting the SD Card
	Mounting the System
	Collecting the Data (directly from Steven Waal’s Thesis)
	Interpreting the Data

	Troubleshooting and Known Issues
	Battery Issues
	Accelerometer Issues
	Display Bugs
	Reset Button
	Soldered Connections

	F - Design Verification Plan & Report
	G - Risk Assessment
	I – iBOM (Indented Bill of Materials)
	J – Total Expenditures

