
 
 

MTB Suspension Tuning DAQ  

Final Design Review (FDR)  
 

By:   Dylan Ruiz   

dyruiz@calpoly.edu 

Ronan Shaffer   

rmshaffe@calpoly.edu 

John Ringrose   

jringros@calpoly.edu  

Theo Philliber 

phillibe@calpoly.edu 

 

June 6th, 2022   

Sponsor:   

 Professor Joseph Mello   

 

Mechanical Engineering Department   

California Polytechnic State University   

San Luis Obispo   

 
 
 
 
  

mailto:phillibe@calpoly.edu
mailto:phillibe@calpoly.edu
mailto:phillibe@calpoly.edu
mailto:phillibe@calpoly.edu


 
 

Table of Contents 
1. Design Updates ......................................................................................................... 1 

2. Manufacturing ........................................................................................................... 3 

2.1 Procurement .......................................................................................................... 3 

2.2 Outsourcing & Manufacturing .............................................................................. 3 

2.3 Assembly ............................................................................................................... 8 

3. Design Verification ................................................................................................. 10 

3.1 Specifications ...................................................................................................... 10 

3.2 Tests and Results ................................................................................................. 12 

3.3 Challenges and Recommended Testing .............................................................. 17 

4. Discussion and Recommendations ......................................................................... 19 

5. Conclusion .............................................................................................................. 20 

References ......................................................................................................................... 21 

 

 
 



1 
 

1. Design Updates 
Since CDR, there have been three main design changes: utilize the original DAQ housing and 
microprocessor, redesign the main hub printed circuit board (PCB), and an updated auxiliary 
sensor housing for the addition of the hall effect sensor. 
 
Utilizing the Original Microprocessor  
 
Since CDR, the intent was to integrate a Renesas Electronics 176 Pin microprocessor in order to 
have more pin connections that the original STMicroelectronics 64 Pin microprocessor. This 
large increase in number of pins was not a team decision but was due there being a chip shortage. 
After incorporating the Renesas Microprocessor into the electrical circuit design on Eagle, we 
held a design review with Cal Poly professor and mechatronics expert, Charlie Refvem. During 
the review, we learned that incorporating this microprocessor would lead us to more work than 
we intended. To our advantage, Charlie had two spare microprocessors that were the exact same 
as Steven Wahl had used with his design (STM32F205RGT6) and were able to just have enough 
pins on the microprocessor to connect the additional sensors. 
 
Redesigned Main PCB 
 
With the original microprocessors in the hands of the team, we had to redesign the main PCB for 
a second time. The Renesas microprocessor had a 25.5mmx25.5mm footprint so when we 
changed back to the smaller STM microprocessor (10mm x 10mm) the original board form 
factor was a possibility. By reorganizing components of original board design and adding the 
new components for the additional sensors, we were able to maintain the same board size as the 
original device. This allowed us to use the same main DAQ aluminum housing which saved the 
team from having to perform design work on an updated housing. By using the original 
microprocessor, we were also able to use the original firmware designed for the STM pinouts.  
 
Updated Auxiliary Sensor Housing for Hall Effect  
 
After the completion of the critical design review, the team still did not have a design for 
incorporating the hall effect to the front wheel auxiliary sensor. Once the new boards were 
manufactured, and we were able to start hand soldering the electrical components onto the 
boards, we could measure the final dimensions of the hall effect in reference to the PCB. Figure 
1 below shows a picture of the board for reference.  
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Figure 1. Auxiliary Sensor Board with Hall Effect 
 

The Hall effect sensor is indicated by the red arrow. Since the sensor stands proud of the board 
by 10mm, the team added a slot in the sensor housing to incorporate the sensor. Figure 2 shows a 
screenshot of the final CAD model of the auxiliary sensor housing with an added slot for the hall 
effect sensor. 

 
Figure 2. Auxiliary Sensor Housing with Hall Effect Sensor Slot 

 
 
 
 
 
 
 
 
 
 
 

Hall Effect Sensor 

Hall Effect Sensor Slot 
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2. Manufacturing 
The following section discusses the manufacturing processes that was executed to complete the 
verification prototype. The processes led to the development of the new data acquisition system. 
 

2.1 Procurement  
Our part procurement process was largely accomplished through purchasing from online vendors. 
All surface mounted (SMT) electrical components that will be soldered to the PCBs, including 
resistors, capacitors, batteries, switches, LEDs, and even the aluminum enclosure that houses the 
main unit were purchased from Digikey. We chose this vendor because of their exceptional variety 
and quantity of parts available, which is critical during supply shortages. We were able to save 
money by buying in bulk and consolidating most of our components into one shipment. We 
selected our components based on our system requirements and how compatible they are with the 
previous version of the DAQ to minimize redesign efforts and potential errors. 
 
We ordered our PCBs and the stencils that we used to apply solder paste to the boards from JLC 
PCB because of their cheap costs, quick turnaround time, and reputation when it comes to quality 
manufacturing. 
 
 

2.2 Outsourcing & Manufacturing 
The outsourcing of our components begins with the manufacturing of the Main DAQ PCB, 
Accelerometer + Hall Effect PCB, and Accelerometer only PCB. These 2-layer PCBs were 
manufactured from JLC PCB. In conjunction with this order, we also requested to have stainless 
steel PCB stencils manufactured. These stencils allowed us to skim solder paste onto the PCBs. A 
zoomed in picture of the main stencil is shown in Figure 3. 
 

 
Figure 3. Main DAQ Stencil close up 
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In order to have these PCBs and Stencils manufactured, we submitted the necessary Gerber files 
to JLC. Gerber files describe the layout and properties of the PCB as defined by our CAD model.  
Below are pictures of the four different boards manufactured by JLC.  
 

 
Figure 4. Front of Main DAQ PCB 

 
Figure 5. Back of Main DAQ PCB 
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Figure 6. User Interface PCB 
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Figure 7. Auxiliary Sensor Boards PCB  

 
In addition to manufacturing the PCBs, we needed to produce more housings for the components. 
For the main DAQ unit, we purchased an aluminum enclosure (see Figure 8). This enclosure had 
to be modified in two ways. The faceplate needed to have holes cut out for the LEDs, display, and 
bolt holes. Second, the side panels will be 3D printed to allow the cables and SD card to be inserted.  
 

 
Figure 8. Blank Aluminum Enclosure for Main DAQ Unit 

 
In order to machine the faceplate, we 3D printed a stencil showing all the features we needed to 
cut into it. This was placed over the faceplate and drilled through for the circular holes. The square 
display hole was traced through the stencil, and then the corners were drilled out and the sides cut 
with an angle grinder. Finally, the corners and sharp edges were cleaned up with files. The stencil 
is shown in Figure 9, followed by the machined faceplate in Figure 10.  
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Figure 9. DAQ Housing Faceplate with 3D-Printed Manufacturing Stencil 

 
Figure 10. Machined Faceplate  
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2.3 Assembly  
The assembly process for our system includes adding all the electronic components onto the PCB’s 
making them effectively complete. To add all the SMT components to the PCB’s we simulated a 
reflow soldering process using a hot plate in place of a reflow oven.  
 
 
First, we oriented the stencils on top of the PCBs, making sure the slots were perfectly aligned 
with the pads on the PCBs. Next, we applied solder paste to the top of the stencil slots, scraping 
off the excess paste with a putty knife to ensure the paste was applied evenly.  
 

 
Figure 11. Applying Solder Paste Using the Stencil  

 
 
After the paste was applied, we removed the stencil carefully, without disturbing the paste applied 
to the PCB. Then we placed all of the SMT components carefully atop of the solder paste. 
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Figure 12. Placing all Components on the Applied Solder Paste 

 
Using the hot plate, we simulated the reflow process by heating up the board and melting the solder 
within the solder paste to create viable connections between our components and the board. 

 
Figure 13. Using Hotplate to Simulate Reflow Oven 

 
During this assembly process, we considered hand soldering all the components onto the boards, 
however this posed a high risk. Hand soldering SMT components onto a board can be challenging 
without the right equipment, and one mistake can make the entire board non-functional. Due to 
these reasons, we decided to pursue other options first and leave this as a last resort. Next, we 
planned to simulate the reflow process using a heat gun. This method is primarily used to rework 
certain components on the board and would have been inefficient for our use as we are assembling 
the entire board which consists of many components. Finally, without the use of a reflow oven, we 
decided to use a hot plate. This would allow us to control the temperature of the entire board rather 
than certain segments. Using a hot plate proved to be the most efficient method to assemble our 
PCBs. Charlie Revfem assisted our team in applying the hot plate method for our PCB assembly. 
 
With the hot plate, we attempted to follow the solder paste manufacturer’s provided thermal profile 
[1]. We used this as an approximate goal since we didn’t have the sophisticated equipment required 
to precisely control the board’s temperature.  
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3. Design Verification 
The following section discusses the results of the testing conducted on the MTB DAQ 
verification prototype. The original specifications designed during the SOW are revisited to 
determine if the new device passed or failed. Then the limited metric testing is discussed to 
answer whether the device can provide suspension tune feedback. 

3.1 Specifications 
Our team prepared multiple specifications that were important for our product’s design based on 
our initial plan. However, as our team decided to prioritize the functionality and metric testing of 
our system, many of these specifications were not able to be met. The following specifications are 
referenced within the DVP&R Table in Appendix F. 
 
Main Hub Size 
We verified the Main Hub size using calipers. Since our new design of the main hub was not 
altered from the original design, despite the additions of the new accelerometer and gyroscope 
sensors, our Main Hub dimensions are within the scope of our specification, being around 
5”x3”x1” in size.  
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Sensor Housings Size 
It is important that our sensor housings do not obstruct any of the bikes’ mechanical parts or the 
user’s natural pathway when operating the mountain bike. With this in mind, our team decided to 
keep the sensor’s housings limited to 1.5”x1.5”x1.5” if possible. Our final design was a sensor 
housing that was 1.7”x1.2”x1.06”. Although these dimensions do not match our initial projection, 
we determined that this size was sufficient for avoiding obstruction while also providing enough 
protection for the sensors. These measurements were also conducted with calipers. 
 
Weight 
The weight of our entire system, including the main hub, two external sensors, housings and cables 
were measured on a scale. The weight of the entire system is 685g. The weight specification 
requires the whole system to be less than 500g. It is desirable to add as little weight as possible to 
the mountain bike, as the system is meant to enhance the performance of the mountain bike. A 
weight similar to that of a full water bottle was desired to justify its use for customers.  
 
Cost 
Our design team initially decided to limit the cost to produce this device to be less than $150. This 
specification was decided on when our goal was to create a customer ready product. However, 
since our scope has changed, the cost to produce the device is no longer relevant as most of the 
cost comes from multiple shipping orders.  
 
Battery Life 
The battery life was tested during our metric testing. We set a time limit of at least one hour of 
operation in our specifications for our design. This was set with the intention of it being used for 
testing sessions that could last at least one hour with no available power sources nearby. Our team 
was able to use it for a little over two hours while testing, having no problems with data corruption 
from the device with low battery.  
 
Ingress Protection 
Due to the change in scope, ingress protection for our device was not designed or tested. Our main 
device’s main purpose was to use for metric testing and would fail this test if it were performed 
with our current design. 
 
Foolproof 
This test focused solely on the use of the Main DAQ system itself, not understand or post-
processing the data. Although our team believes it is important to be able to understand and post-
process the data to achieve results within testing, it is required to have previous knowledge with 
the computing software MATLAB.  
  
Maximum Recording Storage 
This test solely relies on the SD card used. Since our design implements an external storage unit 
(SD Card), the amount of data it can store is varied by the resources of the user. Our design does 
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not have a fixed storage amount and easily exceeds or design specification of storing 8gb or more. 
Our team used a 16gb SD card for our testing and had no problems with the memory being full. 
 
Mounting Universality 
This specification ensures the possibility of using the DAQ device on all types of full suspension 
MTBs. Upon testing this specification, our team encountered an unexpected problem that resulted 
in our design to fail this specification. While all MTB’s have a water bottle bosses that are standard 
in spacing, the position of the water bottle bosses can vary. This resulted in our test to fail, as we 
were unable to insert the ethernet cables into the Main Hub after attaching it to the MTB due to 
the obstruction of the frame.  
 
Aesthetics 
This specification was also not able to be testing and lost its importance once we switched from 
the primary goal of creating a customer ready product. Since the design of the new device was 
primarily to test for metrics when optimizing suspension tuning settings, the aesthetics of the 
design was no longer important and not within the scope of our project. 
 
Suspension Tuning Recommendation 
This specification is out of our project’s scope as we are primarily using the device to validate the 
metrics used to create a suspension tuning recommendation. Our device will no longer give a 
tuning recommendation itself and is not designed to perform that desired action. It will, however, 
be used to collect data that can be used to interpret what settings to change based on our metric 
testing. 
 
 
 
 
 

3.2 Tests and Results 
Metric Testing 
 
Metric testing is the main test that evaluates the performance of the MTB DAQ. Since the overall 
goal of the project is to quantitively provide suspension tune recommendations, we had to gather 
as much data on different suspension settings. There are three suspension tune recommendations 
the DAQ can provide feedback on; stiffness, compression damping, and rebound damping. As a 
team, we concluded a proven suspension tune recommendation must be backed by large amounts 
of data. This data was gathered while a rider rode the same trail on many different suspension tune 
setups. This includes modifying each one of the settings individually as well as at the same time. 
The validation of a tune would be based on speed and qualitative feedback. Speed meaning how 
fast did the rider get from point A to point B. Qualitative feedback from the rider would be their 
opinion on how it felt and what it was doing on the trail. With these two validation points, the 
metric tested during these trails would hopefully backup the faster speed and better rider feedback 
with some sort of sensor rates. 
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The first tested metric was a fork handlebar transmissibility test. This test had one accelerometer 
unit positioned on the handlebar and one accelerometer unit positioned on the fork lower. During 
the first day of testing, we looked at different fork stiffnesses only. The fork used during this testing 
was a Fox 38 with air pressures ranging from 80-100 psi with 5 psi intervals. This range of 
pressures was decided on since the recommended pressure by fox was 90 psi for the rider. We 
assumed that with this starting point recommendation, the fork stiffness would not be changed 
more than ± 10 psi. The testing was performed on the first upper segment of Shooters on the Cuesta 
Grade. This trail is roughly 1 minute long and features high speed flat corners, chattering sections, 
and one small jump. The team collected 2 trials per fork stiffness, totaling up to 10 runs. For post 
processing the data we first took the rms value of the fork and handlebar at a time step of 1ms. 
This plot ended up showing no clear distinction run-to-run. We then increased this time step until 
we could identify spikes or reductions in amplitudes. The final time step we arrived at was ~2 sec. 
The 80 psi and 100 psi data are shown below in Figure 14.  

 
Figure 14. Fork-Handlebar Transmissibility Plot of 80psi and 100psi Fork Stiffness 

 
There were a few things to take away from this testing. First, we needed to identify when the trail 
begins on the plots. This could be as simple as introducing a small feature at the beginning of trail 
that should show a spike on the plot. Secondly, it seems that the fork-handlebar transmissibility 
metric may not be the valid way to provide a suspension tune as we did not see dramatic changes 
in the data collected.  
 
The next session took place on May 31st, 2022 and looked at fork handlebar transmissibility again. 
Max rode the bike during this set of runs. The suspension component being altered was rebound. 
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We did 6 total runs, this time identifying the start of the trail by riding over a 2”x4” block to signify 
a peak in the data. From there we could chop the data collection at the actual start and end of the 
trail. Here is a plot of the transmissibility for the fastest rebound setting, lowest rebound setting, 
and Fox Factory rider recommendation rebound (for Max’s rider weight). 
 

 
 

Figure 15. Fork-Handlebar Transmissibility Plot of Slow, Middle, and Fast Rebounds  
 
Figure 15 looks at the RMS values of the fork and handlebar accelerations, but the data was post 
processed with a time step of ~1.2 seconds. By looking at the graph, we can see that there is a large 
difference in transmissibility between different setups. Less intuitive, but the setting with the least 
number of rebound clicks (slowest rebound) showed the largest transmissibly. We took the post 
processing one step further and took the rms of these data sets with a time step of the entire length 
of the trail. Figure 16 shows the results. 
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Figure 16. Transmissibility of Entire Run with Varying Rebound 

 
From Figure 16, we can see that as the rebound setting in the front fork increases this 
transmissibility metric decreases. The results of this testing are contradictory to the qualitative 
feedback we recorded from Max. The optimal rebound for Max’s fork was 6 clicks and two clicks 
in either direction felt very similar, but as the setting went in either direction the suspension started 
to feel unstable. In the faster rebounds, the fork felt stiffer and had less traction, whereas the slower 
rebounds felt too soft and still did not have traction. Our conclusion on the trend of decreasing 
transmissibility with faster rebound settings is that with faster rebounds the accelerometer on the 
fork lower was able to accelerate more. The equation below shows the transmissibility function 
and the variables changing due to faster rebound.  
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑦𝑦 =  
𝑅𝑅𝑅𝑅𝑅𝑅(𝐻𝐻𝑇𝑇𝑛𝑛𝑑𝑑𝑖𝑖𝑙𝑙𝑖𝑖𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑖𝑖𝑙𝑙𝑇𝑇𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛)
𝑅𝑅𝑅𝑅𝑅𝑅(𝐹𝐹𝑖𝑖𝑇𝑇𝐹𝐹 𝐿𝐿𝑖𝑖𝑜𝑜𝑙𝑙𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑖𝑖𝑙𝑙𝑇𝑇𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛)

 

 
Accelerometer Calibration Verification 
 
Due to time constraints and hardware issues, this test did not end up being performed. The planned 
procedures are laid out below for future groups who wish to perform such a test. 
 
MEMS accelerometers have a certain amount of inaccuracy inherent to their design. That is, the 
accelerations they read may not accurately reflect the true accelerations they undergo. To get an 
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idea of how accurate our ADXL375 accelerometers are, we tested them with known accelerations 
to compare the data to.  
 
Providing a constant known acceleration to the sensors is a somewhat difficult task. Instead, we 
used the known acceleration of gravity to get an idea of how the sensors perform. By positioning 
the sensors at different known angles, we can compare the output of the sensors to the theoretical 
value. To position the sensors, we created a fixture (Figure 17 below) with slots cut at different 
angles. For each 15-degree increment, we averaged 30 seconds of data from each axis, and 
compared them to the expected values. Finally, we took the average and standard deviation of the 
error at each angle and calculated them to 99.7% uncertainty (3-sigma confidence interval). 
 

 
Figure 17. Calibration verification fixture. Accelerometer board would be inserted into the 

angular slots, cut at 15° intervals from 0° to 90°.  
 
From this calculation, we would get an observed measurement error. This would be compared to 
the expected measurement error, based on the accelerometer manufacturer’s posted uncertainties 
and the uncertainty of the test rig.  
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3.3 Challenges and Recommended Testing 
Debugging and Troubleshooting 
 
Identifying and solving problems with the original device proved to be a greater challenge for us 
than we anticipated. Some issues, such as broken soldered connections for buttons, caused bugs 
that were intermittent and sporadic. This unpredictable behavior made it harder to pinpoint the 
problem. Another issue that took our team some time to identify and fix was an inadequate power 
supply, which was probably a result of depleted batteries connected in parallel so that when they 
were unequally charged after some use they would drain into each other, so they would discharge 
faster than expected. Buying new batteries seemed to fix this issue, as well as disconnecting the 
power circuit when not in use. 
 
Procuring Materials and Components 
 
Cal Poly has limited resources for PCB manufacturing and assembly, and electronic components 
are in short supply globally. This made it difficult to buy replacement components and locate tools 
and hardware on campus that we needed to use during assembly. There was also a learning curve 
for our team, as no one had prior experience working with PCBs. Because of this, it took our team 
longer than anticipated to put together our verification prototype. Charlie Refvem was a big 
resource for our team and provided us with electronic components and tools we needed to assemble 
the PCBs that we otherwise would not have had access to. 
 
Metric Testing Challenges 
 
Limited time and logistics, and isolating suspension effects were some of the challenges we faced 
when testing the original device once it was up and running. We wanted to get realistic data with 
our system, which meant riding an actual mountain bike trail segment repeatedly, as opposed to 
some artificially constructed course closer to campus or home. To conduct this testing, we needed 
to drive up to Cuesta Ridge, set up the bike and DAQ, and ride down a section of trail and pedal 
back up for each run of data collection. This ended up taking 3+ hours for 10 runs just varying a 
single suspension parameter, so it’s very time intensive. Once we have collected some data and 
identified some trends, it is not always clear if the cause of the trend is due to the change in 
suspension settings or something else, like the rider getting more comfortable on the trail and 
taking a better line or becoming more tired and riding slower. There are many factors that affect 
the end result. Additionally, there are many different methods to process the data, and it is not 
always obvious how to analyze it to expose differences between runs and make sense of the 
behavior.  
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Recommendations for Testing 
 
First and foremost, we recommend an abundance of testing to collect data on the effects of each 
individual suspension parameter on the bike's behavior. Collecting a wealth of data with a variety 
of settings, riders, bikes, and trails will help clarify trends in the data and isolate the effects from 
specific inputs. It is helpful to have identifiable features that leave distinctive data points as it 
makes it easier to compare results between runs. This can be difficult for certain trails, so choosing 
a simple trail that can be ridden in around one minute would be optimal. This trail should have 
different known significant features that can easily be identifiable when looking at the data. Also, 
when starting the trial runs, implement something to roll over to indicate when you start the actual 
trial run. This allows you to identify the start of each run through data processing rather than 
quickly starting the trial right after you press the button. 
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4. Discussion and Recommendations 
From this design project, we learned that root cause analysis and troubleshooting electronics 
hardware is difficult and time consuming. When there are dozens of components in a few square 
inches of circuit board and hundreds of lines of code, there are a multitude of potential underlying 
causes that might be contributing to the buggy behavior. We also learned that designing and 
assembling the PCBs takes painstaking time and effort as well as technical skills that we had not 
practiced until we assembled our final prototype. This is a crucial step in the manufacturing process 
because one faulty soldered connection can disrupt the functionality of the entire system.  
 
To continue this design, we would fix the board design to add any missing traces and fix any 
soldering mistakes with the existing components so that every sensor is fully functional. We would 
also conduct more testing and collect as much data as possible to have more room for developing 
metrics and identifying trends that result from suspension changes. 
 
If we were to continue refining this design to meet the needs of the customer, we would make the 
system more user friendly to set up and operate. Specifically, we would redesign the UI to include 
a battery charge level indicator, move the record button to the handlebars for easier access, and 
recess the power switch below the surface of the housing to prevent inadvertent switch flips. We 
would also use batteries that are more standard and safer, such as 18650 cylinders, to avoid 
connecting batteries of varying capacities in parallel. Furthermore, we would improve the housings 
to eliminate openings to the interior that could allow dust and water to enter the same space as the 
electronics and incorporate another mounting option for the central unit, so the rider does not have 
to choose between bringing a water bottle or the DAQ on a ride. Finally, we would include 
Bluetooth modules to transmit and receive data wirelessly, so the rider does not have to fidget with 
messy ethernet cables and zip ties. 
 
If we were to build this prototype again, we would outsource the assembly of the PCBs to 
streamline the manufacturing process and minimize any soldering mistakes that could result from 
tediously soldering by hand every component onto the board. We would also like to test the final 
circuit with a bed of nails to detect voltages and currents at many different grid points to ensure 
power and signals are being sent where they should be sent. 
 
To produce a high volume of devices at a reasonable price and in a time efficient manner, we 
would outsource the soldering/assembly process to a facility who specializes in PCB production 
and has the means to mass produce high quality, reliable boards. We would also buy components 
in bulk from suppliers to lower the price per component. 
 
Our team recommends using this design to continue testing potential metrics that will lead to the 
development of an algorithm that can be used to suggest optimal suspension tuning settings. Using 
the User Manual in Appendix E, anybody should be able to use this design efficiently as our team 
covers known bugs and issues with the device. 
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5. Conclusion 
In retrospect, this project was not the best fit for a Cal Poly Senior Design Project, given the 
structure of the class and timeline of deliverables. The emphasis on problem definition and 
ideation in the first quarter is better suited for teams starting a design from scratch, and we feel 
that we could have achieved more of our goals if we had been able to test, troubleshoot, and 
refine the existing design earlier in the year [2]. 
 
In the end, we were able to fully debug the original device and collect good data with a mountain 
bike on the trail. We designed and built a partially functional data acquisition device, capable of 
collecting data with our two auxiliary accelerometers. We also redesigned and manufactured 
sensor housings that are more universally compatible with different bikes. Finally, we analyzed 
data that we collected to start identifying trends and experiment with post-processing methods. 
 
We did not achieve a fully functional device capable of collecting data from all three 
accelerometers, the gyroscope, and the hall effect speed sensor. We also did not fully develop 
and refine enough metrics to robustly process data and draw meaningful conclusions. We 
attribute these shortcomings to our mismanagement of time at the beginning of the year, when 
we should have been prioritizing testing and hardware troubleshooting. However, we feel that 
another reason we failed to achieve these end goals is the ambitious scope of this multi-faceted 
project. Considering the experience of our team coming into this project and the resources and 
guidance available to us throughout the year, the mismatch between this project’s needs and the 
course’s structure and requirements, and the miscommunication about critical flaws in the 
original device, we feel we were not adequately prepared to successfully complete our goals that 
we set in the beginning of the year.  
 
If we were to do this project over again, we would refine our goals to focus on getting the 
hardware and firmware right to build a fully functional data acquisition system from scratch. We 
would only move on to metric testing, development, and data processing afterwards, or separate 
this section into its own project entirely. 
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Appendix  
A - Main DAQ Python Code 
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B - Gyroscope Driver Python Code 
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C - Data Processing MATLAB Code 
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D - Converting Data MATLAB Code 
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E - User Manual 
The following user manual provides instructions to operate the MTB DAQ as well as important 
safety information. Read this section this prior to operation and see the troubleshooting section if 
problems arise.  

 
Operation of DAQ System 
 
Flashing the Main DAQ (directly from Steven Waal’s Thesis) 
 
The main board was designed based on the PYBv1.1 schematic. As a result, the firmware and 
flashing instructions are the same as those for the PyBoard. The main board utilizes the device 
firmware update (DFU) protocol that comes embedded with each STM32 microcontroller. DFU 
mode allows for a simple way to update the firmware of an STM32 without requiring specialized 
hardware. It was mainly designed for updating the firmware remotely on devices that have already 
been released. To flash firmware to the board, use the following steps:  
 

1. Make sure that a DFU utility program is installed on the computer that will be used to 
flash the firmware. “dfu-util” is a free DFU utility program than runs in terminal. Install this 
program via the package manager.  

2. With the power to the board turned off, move the jumper on port JP1 from “JMP 
STORE” position to the “DFU” position. This will tie the DFU pin of the microcontroller to 3.3V. 
Figure 4.11 depicts these positions. When the board is powered on, the microcontroller will enter 
DFU mode upon boot.  

3. Connect to the board to a computer via USB.  
4. Use the dfu-util commands to flash the firmware to the board. For more details on using 

this software to flash the board, refer to.  
5. Once the firmware has been loaded on, power off the board and return the jumper on 

JP1 to the “JMP STORE” position. The main board runs off the standard released PYBv1.1 DFU 
firmware files available on the Micropython website. At the time of this writing, the most current 
version that worked with the main board was pybv11-20191220-v1.12.dfu. [Reference: Steven 
Waal’s Thesis Defense] 

 
Once the proper firmware has been loaded onto the board, the main board will appear as a standard 
USB device when connected to the computer. At this point, the Micropython files outlined in 
Section 4.5 can be loaded on to the board using a standard method for transferring files. Note that 
when first loading on the files, make sure that there is no Micro SD card loaded in, as this will 
appear instead of the USB device representing the microcontroller internal flash memory. It is 
important to load the files onto the internal flash memory and not the Micro SD card. Once this 
has been done, the MTB DAQ is ready for operation.  
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Formatting the SD Card  
 
The Micro SD card needs to be formatted according to the SD card association.  In order to remove 
old data, it is important to completely erase both the “log” and “count” folders and all of the 
contents in them. These folders will be remade if they don’t already exist, and the proper files will 
be generated upon the next power up of the main unit.  If only the “log” file is deleted, the system 
will continue counting based off of the “count.txt” file.  The data will still be saved, and the proper 
number will be displayed on the display of the system, but the numbering will not start over as 
desired.  Reformatting the Micro SD card is a good way to ensure that it is completely erased and 
ready for a new testing session. [Reference: Steven Waal’s Thesis Defense] 
 
 
 
Mounting the System  
 
Attaching the MTB DAQ System is fast and easy to do with any bike you might be using.  
 
The OneUp straps slide through the slots in both auxiliary sensor housings, and then they are 
placed with the angled surface against the bike so that the strap wraps around the chain stay, fork 
housing, or handlebars. It is important to place the cadence sensor on the fork housing, adjacent to 
the magnet location on the spokes of the front wheel, so that the wheel speed may be measured if 
desired. This sensor should be oriented with the cable port facing the handlebars so that the magnet 
is in the range of the hall effect sensor.  
 
The central unit mounts to the middle of the main frame, with bolts going through the designated 
holes in the housing through the water bottle boss to secure the unit in place. Make sure the 
faceplate with the display screen and indicator lights is face up and visible.  
 
Finally, the ethernet cables plug in to each auxiliary sensor unit, connecting them to the central 
unit. Any excess cable should be secured to the bike frame so that it does not interfere with the 
rider’s motion. This will prevent injury to the rider and damage to the DAQ system. 
 
Collecting the Data (directly from Steven Waal’s Thesis) 
 
Before powering on the MTB DAQ, make sure both ADXL375 accelerometers are plugged in to 
the main unit. The main unit configures the accelerometers upon startup and is not able to re-
configure after the power has been turned on. If the accelerometers are not plugged in before the 
power is turned on, turn off the main unit, plug them in, and turn it back on.  
 
The MTB DAQ is powered on and off via the power switch. Power status is indicated by the power 
LED (green). Upon power up, the main unit will check for the presence of a Micro SD card. If no 
Micro SD card is inserted, “SD” will flash continuously on the display. Once a Micro SD card is 
inserted, “SD” will flash three more times until the main unit detects the card. Once the card has 
successfully been detected, the display will show the number of the current data file stored on the 
Micro SD card and the record LED (red) will turn off. If the Micro SD card has just been formatted, 
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the display will show “0” indicating that no data has been logged. The MTB DAQ is now in 
standby mode and ready to record data.  
 
Data recording is started by pressing down on the record button. After the first press, the record 
LED (red) will turn on and the display will increment the displayed number indicating that the 
main unit is recording data. The number that is displayed during and after recording indicates the 
number of the data file associated with that recording session. Pressing the record button a second 
time will make the record LED (red) turn off indicating that the main unit is done recording. The 
display will continue to show the number from that most recent recording session. The main unit 
is immediately available for another recording session. When testing is finished, it is best to turn 
the main unit off before removing the Micro SD card. [Reference: Steven Waal’s Thesis Defense] 
 
Interpreting the Data 
 
After collecting the data on the Micro SD card, the files on the card should be in the format ‘.bin’. 
Download the MATLAB scripts named “Convert_ADXL375_Gyro_Data.m” and 
“Accelerometer_Data_Testing.m” (Testing script). The first file is used to convert the 
accelerometer, gyroscope, and hall effect data from binary to its intended values. The first file is a 
function file, so it will be referenced when the testing script is run. To run the testing script, you 
must first insert the file name that you wish to process in the line below, 

 
 
For the transmissibility metric, our team added a post-processing segment to the testing script. The 
post processing of the data includes turning the raw acceleration data into a total magnitude of 
acceleration, not dependent on direction. Using the magnitudes, we find the total RMS of the entire 
run and calculate the RMS at certain timesteps to make the Transmissibility plot easier to 
understand. The timestep is changed based on a factor, which the user can manipulate to change 
the timestep. The timestep is calculated to be (factor/1600) seconds. You can change the factor in 
the line below, 

 
 
The script will ultimately produce three transmissibility values for the entire run, one for each run 
within the script and plots similar to Figure 13.  
 
Troubleshooting and Known Issues 
 
Our team’s project was a continuation of Steven Waal’s Master’s Thesis, in which he designed a 
DAQ system consisting of only two external accelerometers. Our team worked off his design and 
encountered many problems with his data acquisition system. The following are some of the 
problems/bugs we encountered. 
 
Battery Issues 
Throughout our time working with Waal’s version of the DAQ, we encountered problems with 
the battery design. The DAQ at times would not display the correct message upon bootup or 
display no message at all. This could be due to the batteries being dead, even if it happens within 
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a day or two of no use. Our team believes that the DAQ design is leaking power through one of 
the connections, even when it is switched off. If this problem occurs, unplug the batteries from 
the ports until you must use the DAQ again. This will keep the batteries charged and ready. 
 
Accelerometer Issues 
When operating the DAQ, at least one external accelerometer must be plugged in. The DAQ will 
not function correctly if the accelerometer is not plugged in via an ethernet cable. The DAQ will 
show it is recording, but the button will not be able to end the recording session.  
 
Display Bugs 
Sometimes, when starting a new recording session, the number on the display won’t change. 
This is a common bug that happens, but it does not affect the file creation of the recording 
session. If another recording session is created, the display will skip the number of the previous 
recording and display the correct file number. 
 
Reset Button 
On the PCB of the main DAQ, there is a small black button labeled with the word ‘reset’. 
Pressing this button does not restart the system, but instead clears all of the program files off of 
the MCU. If this button is pressed, the device must be plugged into a computer with USB, and 
the files copied back onto the device labeled ‘PybFlash’.   
 
Soldered Connections 
If issues not listed above are occurring, they may be the result of broken solder joints. We have 
dealt with the display not working properly and identified the issue to be a broken solder joint in 
the record button. This button is held in place by solder, and the force of pressing the button can 
break the connection. Through visual inspection and voltmeter readings, the PCBs can be 
analyzed to find these iss
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H - Test Procedures
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